
An agent-based approach
to support the scalability of change propagation

C. Constantinescu, S. Kornienko, O. Kornienko, U. Heinkel
Institute of Parallel and Distributed Systems

University of Stuttgart , Universitätsstr. 38, D-70569 Stuttgart, Germany

Abstract

In this paper, we address aspects of the challenge
facing the Data Integration solutions in the problem
of increasing the scalability. We first overview our re-
sults in data integration and present our prototype.
Searching for a motivation to employ the agent-based
technology and envision how this technology can be
applied to improve the system scalability represent the
next step of our research. For that, we examine some
formal definitions and metrics of scalability which fit
the purpose of system description. The analysis of
our data integration solution, a change propagation
system called Champagne, identifies the system com-
ponents having the most influence on the scalability
problem. We propose to employ the agent-based tech-
nology to improve the scalability and perform some
experiments which reveal our work.

1 Introduction

Most enterprises have a diverse environment of het-
erogeneous and autonomous information systems. If
the same data is relevant for several information sys-
tems, then data changes in one system affect data
stored in other systems. The integration of data as
well as of functionality is generally termed enterprise
application integration (EAI) [3]. The management of
a single, integrated enterprise information system is
often infeasible or too expensive, due to the autonomy
of information systems and the heterogeneity of their
IT infrastructures.

The solution is to support the enterprise by a
generic approach able to manage data dependencies
and to transform data stored in a source information
system according the specifications of the dependent
information systems [2]. The solution has to possess
specific features that enable the operation in turbulent
and unpredictable environment. It has to face an in-
creasing number of systems which intend to benefit of

the service of change propagation. These systems are
characterized by high diversity and the heterogene-
ity of their data structures. At the same time the
approach has to process a growing flow of changed
data between already connected systems. These chal-
lenges bring the problematic into the field of scalabil-
ity. Moreover, the operation in a turbulent and unpre-
dictable environment demands the ability to monitor,
react and rapidly adapt to these changes. This capa-
bility supports robustness, reliability and availability
of the change propagation solution.

We propose to improve scalability by employing the
results from the field of cooperative information sys-
tems. The agent-based technology has proved his ”col-
lective intelligence” to support cooperation and com-
munication in complex processes [7]. However this
technology has its own price, consisting of hard mod-
elling and simulation work before its implementation.
Based on these assumptions we investigate through
several experiments the efficiency and effectiveness, as
well as the general benefits of using agent-based ap-
proach in the problem of change propagation.

The paper is structured as follows. Section 2 gives
an overview of our results and implemented prototype
in the field of data integration. In Section 3 we iden-
tify a motivation to employ the agent-based technol-
ogy and envision how this technology can be applied
to improve the system scalability. Then, in Section 4,
we propose to use the agent-based technology to im-
prove the scalability of our solution and perform some
experiments. Finally, in Conclusions, we analyze the
obtained results and conclude about expectation of ap-
plying the agent-based technology in the change prop-
agation solution.

2 Champagne, a solution for the
change propagation

This section overviews the architecture, the main
components and the features of our approach in the

korniesi
Textfeld
157

korniesi
Textfeld
Proceedings of the ISCA 17th International Conference on Parallel and Distributed Computing Systems,
D.A. Bader, A.A. Khokhar (eds.), San Francisco, California, USA, September 15-17, 2004

field of enterprise application integration.
We developed a data change propagation sys-

tem called Champagne (change propagation man-
ager)focused on data integration level of EAI [3]. Our
prototype consists, of the following main components,
the propagation manager, the dependency manager,
and the repository. The detailed flow during the pro-
cessing of change propagation between a source sys-
tem, and the dependent system is presented in [2].

Our implementation is based on several concepts
introduced in [2]. We recall the definitions of the main
used terms in this paper.

Change propagation is the process of forwarding a
data change from a source system to all dependent
systems. We use the term dependency to describe a
directed relationship between a source and several des-
tination systems. It specifies the source, the destina-
tion systems and a propagation script. The propaga-
tion script contains information required for transfor-
mations (defined by transformation scripts), filtering,
and routing. The Propagation Manager transforms,
filters, and routes changed data using the dependen-
cies that have been created, stored, and updated by
the Dependency Manager. Its main component, the
Propagation Engine, interprets the scripts based on
a workflow specification language. The Repository
stores the dependencies, the XML schema descrip-
tions of the systems, and propagation and transfor-
mation scripts. The Adaptors map data between the
local schemas of the connected systems and the corre-
sponding XML schemas. To enable both synchronous
and asynchronous communication between the adap-
tors and the propagation manager, we use Java Mes-
sage Service (JMS).

The combination of XML technologies and the ex-
plicit treatment of dependencies via a modular design
guarantees the necessary functionality and flexibility
of change propagation in EAI. For the sake of plat-
form independence, a vital requirement in heteroge-
neous environments, we built all components in Java.
We developed our prototype as part of a larger re-
search project on innovative concepts and techniques
to enable highly flexible series production systems in
the manufacturing industry 1.

Champagne provides a high degree of reliability and
availability. For example, failures in participating sys-
tems are handled in a way that other systems are un-
affected. Finally, Champagne has to be scalable, i.e.,
the resources (time and memory) required to manage

1SFB 467 ”Transformable Business Structures for Multiple-
Variant Series Production”, funded by the the German Research
Foundation.

dependencies should grow (linearly) in proportion to
the number of dependencies and to the amount and
size of data to be transformed and propagated as well.
The scalability represents at the moment one of the
challenge we have to face.

3 Motivation and vision for improving
scalability in change propagation

We envisioned in [2] as our future work the employ-
ment of agent-based technology in the problem of data
change propagation. We arrived now to the point to
search for a motivation of using this technology for the
purpose of improving our system. While a challenge
to confront our Champagne is the scalability, we ex-
amine in the following some possible ways to address
it. First, we give an overview of the scalability by
its definitions, typology and metrics. Then, we dis-
cuss our system from the scalability point of view and
identify its components which play critical role in scal-
ability increasing. Based on our results in the field of
MAS [5], we envision several agent-based mechanisms
supporting the solution of our problem.

3.1 Phenomenon of scalability in collec-
tive information systems

Scalability represents a desirable feature of systems,
meaning economical functioning in a wide range of
sizes and configurations. Several authors often de-
fine scalability in terms of productivity and perfor-
mance [4]. In the domain of multi-agent systems scal-
ability can be also stated in terms of co-ordination
policies as e.g. total number of message exchanges
necessary to converge on a solution [7]. In the field of
enterprise application integration the scalability refers
to the challenge of making the integration solution to
achieve the propagation of changes across the grow-
ing number of connected applications or information
systems.

Type Description

Load scalability functioning at different loads
Structural scalability growing number of subsystems
Diversity Scalability growing heterogeneity degree
Dynamic Scalability shifting to short-term dynamics

Table 1: Different types of scalability.

We show in Table 1 the identified types of scal-
ability relevant for our work (see e.g. [1]). Return-
ing to collective information systems, we remark that

korniesi
Textfeld
158

scalability differs here in several ways from other, like
multiprocessor, systems. Firstly, scalability in collec-
tive information systems means primarily structural
scalability of two types: growing amount of identi-
cal components as well as growing diversity of com-
ponents, i.e. structural and diversity scalability. Al-
most all collective systems reveal this property. Sec-
ondly, at growing number of components, the load on
the system increases as well. Therefore load and dy-
namic scalability are also typical for collective informa-
tion systems. There are several challenges we have to
face in each case of above mentioned scalability types.
The structural scalability induces the increase of co-
ordination effort to solve a problem, the overload of
communication, the explosion of communication costs
and the fail of communication channels. The diversity
scalability has impact on the flexibility with the need
of adaptations for the new components and on the
functional adaptation of collective procedures to new
components. The load and dynamic scalability influ-
ences the appearance of overloads and bottle necks,
the growing of probability for partial failure’s and the
need of activities monitoring.

In the following we employ agents-based technolo-
gies to solve problems arising primarily at diver-
sity scalability as well as load and dynamic scalabil-
ity in collective information system. Our case study
refers the data change propagation system Cham-
pagne, briefly presented in the previous section. This
field of application allows without loss of generality
to consider the common tendencies of providing espe-
cially structural scalability and illustrate them by a
practical example.

3.2 The challenge of scalability in change
propagation

In our usage, scalability refers the challenge of mak-
ing the propagation system to achieve its role across
the number of connected information systems.

To propose a solution to this problem, we analyze
the case of an increasing number of connected sys-
tems which take benefit of change propagation service
offered by Champagne. Suppose that a new system
intends to propagate across all interested systems its
changed data, through our approach.

First, Champagne has to manage (create, store,
use) in the repository all data regarding the new
client-system: system name and its associated XML
schemas, authentication information needed when sys-
tem connect to Champagne, all existing dependencies,
consisting of the name of the source (here the new
system) and destination systems and their schemas,

as well as the name of the propagation script, propa-
gation scripts involved in any dependency, and trans-
formation scripts referenced in any propagation script.

Second, Champagne has to deliver to each new
system an adaptor which provides the specific bi-
directional translation between its local data represen-
tation and a representation that conforms to an XML
schema. The designer of the adaptor has to define an
appropriate schema in the repository using the schema
editor of the dependency manager. Thus, we have
identified two critical components involved in connect-
ing a new system and responsible for the system scala-
bility: the dependency manager and the adaptors. As
a conclusion, there are at least these two directions
which motivate our work to support the scalability of
change propagation with agent-based technology.

3.3 Envisioned mechanisms providing
scalability

As pointed out in the previous sections, the prob-
lem of scalability is closely related to the changes of
system’s relevant parameters and to the reaction of
the system on these changes. In this context we distin-
guish between scaling values (parameters) and absorb-
ing values, in charge of absorbing the changes caused
by scaling. The scaling mechanisms have to provide
the stable working with similar performance in some
range of scaling as well as absorbing parameters. In
the case of Champagne, we consider as one of the rele-
vant parameter the number of connected systems. If a
new system is coupled, the number of connected sys-
tems changes. The reaction of Champagne to this
change consists of the creation and storing all infor-
mation related to the new system, in the repository:
names, XML schema, dependencies and related prop-
agation and transformation scripts.

The use of mechanisms proving scalability brings
us in following three cases of interest: the system
is nonsensitive to the variation of scaling values; the
changes of scaling parameters can be absorbed by simi-
lar changes of absorbing parameters in linear or sublin-
ear proportion; and the scaling changes require mul-
tiple modifications of absorbing parameters or even
modification of system’s structure.

The first case is the most relevant for the scale-
invariant systems. Although this issue is of huge inter-
est, the treatment of this problem oversteps the frame-
work of this work.

The second case represents the standard speedup
solution: a growth of scaling parameters is compen-
sated by equivalent growth of resources. For example,
each new change propagation query in Champagne is

korniesi
Textfeld
159

connected with a new handling process. Thus, N new
queries create in parallel exactly N new processes, the
total system’s performance remains the same for dif-
ferent load N . If we can guarantee that the consumed
resources by these processes growth sublinearly or lin-
early with N , this scheme can underlay the mecha-
nisms providing scalability. However, in many cases,
the speedup schemes cannot assure a complete ab-
sorbance of changes.

The reasons of this deficiency consists in a nonlin-
ear multiple dependence between scaling and absorb-
ing values. In this last case we cannot absorb the
changes in the speedup way. As a result, we need to
perform more complex modifications, even to modify
the structure of the system. For example, increasing
the frequency fq of querying, we can achieve the limit,
where new processes get started when already started
processes are not yet finished. These N new handling
processes will be added to the not-finished ones and
the total number of started process Np growths expo-
nentially with fq. The speedup solution is not useful
here, this problem can be solved only by shortening
the time required by handling process. This, in turn,
requires multiple modifications of the system struc-
ture.

The speedup and the multiple modifications repre-
sent two main scaling mechanisms utilized further. We
propose to employ the Multi-Agent-Systems (MAS)
for implementing these mechanisms, based on two rea-
sons. The first reason lies in the autonomy of agent
behavior. Each agent executes cyclically a sequence of
activities, like collecting of information, planning and
so on. These activities can include monitoring of scal-
ing values to perform an adaptive speedup. An agent
can continuously monitor changes in the system in or-
der to start new propagation processes, as well. Gen-
erally, the autonomy gives to agent-based approaches
the ability to react dynamically in continuously chang-
ing environment.

The second reason consists in agent’s ability to find
collective solution based on negotiation. The point is
that the collective solution space is essentially larger,
than that of individual agents. The agents group can
find (and optimize) the solution in situations where
separate agents fail. This property is of essence for the
mechanisms involving multiple modifications. In the
performed experiments the dependence between some
scaling and absorbing value continuously changes. It
is very difficult to find an optimal relation (and some-
times even a non-optimal one) in advance. Therefore
agents, based on negotiations, have to find this rela-
tion so that to guarantee scalability in a given range.

4 Multi-agent change propagation sys-
tem

4.1 Multi-agent architecture of depen-
dency manager

We propose a MAS architecture of the dependency
manager in order to implement scaling. The architec-
ture consists of two layers, focusing on primary and
secondary activities, as presented in Fig. 1. The pri-

primary activity

look for new
change

monitor
activities

monitor
activities

start resolving
procedure

start additional
agents in parallel

change
parameters

found
XML

create
new process

if ready delete process

create process agents

graphs
created

match
done done

wait for
graphs

wait for
match

wait for
input

p
ro

p
a
g
a
ti

o
n
 s

cr
ip

t

secondary activity

Matcher
Agent

Process
Agent

Input
Guard

Constraints
Conformer

Script
Generator

Overload
Administrator

Error
Handler

XGT
Agents

Figure 1: Structure and main activities of multi-agent de-
pendency manager.

mary activity layer implements the constraint-based
matching that underlies the dependency manager dur-
ing the process of dependency creation. The Input
Guard agent monitors the changes in a given system
and triggered by a changed data starts the Process
Agent. This has a hierarchical structure and consists
of the XGT (XML-Graph-Transformer), Match-
ing, Constraint Conformer and Script Genera-
tor agents. XGT agent gets two XML scripts from the
Input Guard, describing the data structures of source
and destination systems. These XML structures are
converted into an internal graph representation. The
Matching Agent receives these graphs and performs
the matching. The contained XML constraints are
processed by the Constraint Conformer agent. The
goal of this operation is to find compromises between
constraints of source data structures and destination
data structures. Finally, the Script Generator agent
creates the propagation scripts. The details of agents
implementation as well as of the performed operation
are given in the next section.

The scaling values of this architecture are repre-
sented by the frequency of querying fq, the number
of querying processes at once Nq and the diversity
DXML of XML data structures. These values corre-
spond to the load and diversity scaling, mentioned in
Section 3.1. The absorbing values are the number of

korniesi
Textfeld
160

simultaneously started processes Np and the number
of started Matching Agents Nm. In the speedup so-
lution we create constant linear dependency between
Nq and Np and variable linear dependency between
DXML and Nm. The creation of nonlinear dependency
between absorbing values Nm, Np and the frequency
of querying fq is used in the mechanism of multiple
modification. The details as well as results of experi-
ments are discussed in Section 5.

The secondary activity layer handles the irregulari-
ties arising during the constraint-based matching. We
identify two kinds of irregularities: overloads and er-
rors in XML data structures. These are managed cor-
respondingly by the Overload Administrator and
the Error Handler agents. Since Error Handler does
not affect the scaling properties of the propagation
system, its activities are limited by simple genera-
tion of error messages. However overloads are closely
connected with scaling values (they cause overloads).
To handle them we utilize the collective properties of
multi-agent system to find such a combination of sys-
tem’s parameters to absorb the overload.

For the Overload Administrator agent we apply
a simple evolutionary strategy of collective solution
as presented in Table 2. The Overload Administra-

agent:role(Overload Administrator)
do always monitor system’s load
activate if load > threshold do iteratively

create (list of agents)
call agents (from list) set role=change

absorbing value
finish iteration if load< threshold
endactivate

endrole

agent: extend agent (name)
:role(Change Absorbing Value)

create (list of absorbing values)
do iteratively (change values)

synchronize agent (empty)
if load goes down do further
finish iteration if list empty ||

load goes up
endrole

Table 2: Example of role-based evolutionary strategy for
collective solution finding.

tor agent monitors system’s load (number of started
agents, resources consumed by agents) and, at over-
stepping some threshold, it calls other agents and sug-
gests them to change the absorbing values that these
agents have available. The called agents start the role

Change Absorbing Value and try to vary the param-
eters. They continue the changing of parameters if
the load goes down, otherwise they start to try new
combination of parameters. Since the number of possi-
ble absorbing parameters in the dependency manager
is small, agents do not need to synchronize explicitly
the changing behavior. The changes of load allow im-
plicit synchronization. Although this simple strategy
cannot guarantee convergency for a large number of
agents, for a small number of agents it allows finding
the gradient and continuous descent on the gradient.

4.2 Details of modelling and performed
experiments

We implemented the agent-based dependency man-
ager in Java, by using the AnyLogic2 simulation engine
for managing agent activities. Instead of converting
XML data structures, we create in our experiments
the graph according the following format:

Field1 {Subfield1 (value, constraints),
Subfield2 (value, constraints),...},

Field2 {Subfield1 (value, constraints),
Subfield2 (value, constraints),...},

...

The number of fields and subfields is random between
1 and FieldMax=[1 - 1000]. For matching, we use
the approach suggested in [6], which recommends the
matching of name similarity, position in hierarchy and
similarity of constraints. The constraints are given in
the form of value type (integer, double, string) and
permissible range (e.g. 0-1000). In the match of can-
didates with similar constraints (e.g. integer → inte-
ger, or integer → double) we perform transformation
of constraints. The Input Guard agent can be acti-
vated 1-100 times per second (fq) and it can start 1-
1000 process agents simultaneously (Nq). The number
of matching agents Nm varies between 1 per process
and number of Field (we perform parallel matching
on the subfield level only, since deeper level of paral-
lelization brought no added benefit). The experiments
are performed with a single-processor machine Pen-
tium 2,0 Mhz with 512MB memory. Since we use a
single-processor machine, the started agents are exe-
cuted by the AnyLogic simulation engine in sequence.
Therefore the number of simulation steps, required for
one agent to perform all activities, can be assumed to
be proportional to consumed system’s resources (CPU
time, memory and so on) by the whole simulation.

2www.xjtek.com

korniesi
Textfeld
161

This value is adopted as a consumption of system’s
resources.

5 Discussion of results

We mainly use in our experiments the load as the
number of querying processes started at once Nq and
the frequency of query to propagate changed data, fq.
Figs. 3(a) represent the load of the system through
these two parameters. Fig. 2 highlights that the sys-

n
u

m
b

er
 o

f
st

ep
s

fo
r

1
 p

ro
ce

ss

number of processes started at once

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100

Figure 2: Dependency between the load and consumption
of system’s resources.

tem is Superscalable at the growing number of parallel
processes. This points to the coincidence of the results
with the speedup scheme. The consumed system’s re-
sources growth linear (in this case slightly sublinear)
with the number of processes. In a multi-processor im-
plementation the consumed resources by one process
are expected to remain constant.

According to the experiments shown in Fig. 3, the
system has for the variable fq the range [0 - 8], where
the number of processes remains constant. However
beyond this range the number of processes (3(a)) as
well as the consumed resources (3(b)) growth expo-
nentially with fq. As already mentioned, we explain
this behavior through new processes which get started
when already started processes are not yet finished.
The size of queue containing not-finished processes is
constant for the same fq, but growths exponentially
with fq. The size of queue depends on several other pa-
rameters, the most important is the length of process.
This depends on matching parameters, on the num-
ber of matching agents, on the constraints converting
procedure and so on. After discussing the meaning
of these parameters for diversity scaling, we return to
the frequency of querying, in trying to improve this
relation.

n
u
m

b
er

 o
f

p
ro

ce
ss

es

0

5

10

15

20

25

30

35

0.1 1 10 100

si
ze

 o
f

q
u
eu

e

frequency of querying

(a)

n
u
m

b
er

 o
f

st
ep

s
fo

r
1
 p

ro
ce

ss

frequency of querying

0

2000

4000

6000

8000

10000

12000

14000

0.1 1 10 100

(b)

Figure 3: (a) Load scalability as the frequency of querying,
Nm = 1; (b) Dependency between this load and consump-
tion of system’s resources. Both dependencies are shown
in logarithmic scale of the x-axis. Overload Administrator
is off.

5.1 Diversity scalability

We define and use the term of diversity scalability
as the number of fields that do not coincide in source
and destination data structures. The dependency be-
tween the length of matching and the maximal num-
ber of fields is reflected in our approach by defining
the following parameter:

K = random(
maxFields

100
maxDiversity, maxFields)

(1)
The difference between values of K1 (calculated for the
first graph) and K2 (for the second graph) gives us the
real diversity. The values of maxDiversity (expressed
in %) describes how the first graph differs from the
second one (for maxDiversity = 100% they do nor
differs at all). The maxFields is the maximal length
of fields in the relation (1). To demonstrate the de-

korniesi
Textfeld
162

pendency between length of fields, diversity and the
time of matching we adopt maxFields as the value of
diversity in the performed experiments.

We illustrate in Fig. 4 the dependence between max-
Fields, in the range [3 - 100], and the time needed for
matching. The matching time is taken as the number
of matched fields multiplied on the number of steps
required to match one field. Fig. 4(a) shows this de-

0

50

100

150

200

250

300

0 20 40 60 80 100

diversity

co
m

su
m

ed
 t

im
e

b
y

 m
at

ch
in

g

(a)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

diversity

co
m

su
m

ed
 t

im
e

b
y
 m

at
ch

in
g

(b)

Figure 4: (a) Diversity scalability (maxFields) at Nm =
1, fq = 1; (b) Diversity scalability (maxLFields) at Nm =
number of F ields, fq = 1.

pendence in the case of one matching agent started,
whereas Fig. 4(b) presents the case where the number
of started matching agents equals to the number of
Fields in the graphs. The linear dependency between
the number of matching agents working in parallel and
the corresponding consumed resources is presented in
Fig. 5.

A comparison between Figs. 4 and 5 reveals that
the load scalability (frequency of querying) has greater
impact on Champagne than the diversity scalability.

10

100

1000

10000

0 20 40 60 80 100

system load

time consumed by matching

matching agents, started in parallel, %

co
n
su

m
ed

 t
im

e
N

 o
f

st
ep

s

Figure 5: Dependence between the number of matching
agents, working in parallel, resources consumed by agents
and the time needed for matching.

The resources consumed by agents growth linear (like
in Fig. 2 slightly sublinear) with the number of agents
that points to a constant consumption in the multi-
processor implementation. The time of matching is
closely related to the size of the queue in the case
of increasing frequency of querying. We discuss this
dependence in the next section.

5.2 Improving load scalability

To improve the load scalability, we intend to short
the process time. In the proposed architecture, the
most time is consumed by the matching agent. There-
fore, shortening the matching time, we can reduce the
process time. Two parameters enables us to reduce the
matching time: the number of simultaneously started
matching agents Nm and the way how to perform the
distributed matching (e.g. the level of distribution).
Changing the level of distribution from Fields to Sub-
Fields or even deeper to Value, Constraints, in the
performed tests, we did not achieve a real increase of
performance, because to collect the matched results
from the deepest level agents consumes time, as well.
This collecting time finally growths proportional to the
level of distribution. Therefore Nm remains the only
effective parameter that can be handled.

The Overload Administrator agent monitors the
system’s load (in this case the number of processes Np

in queue) and if Np growths considerably it calls the
role Change Absorbing Value of other agents. Since
Nm is only one effective parameter in the system, the
call of this role changes only the number of simulta-
neously started matching agents. The dependency be-
tween the number of started processes, the consumed

korniesi
Textfeld
163

resources by agents and the frequency of querying is
shown in Fig. 6.

0.1

1

10

100

1000

10000

0.1 1 10 100

N
 o

f
st

ep
s

N
 o

f
p
ro

ce
ss

es

frequency of querying

Figure 6: Dependency between the number of processes,
consumption of system’s resources and frequency of query-
ing if the Overload Administrator is on. Both dependencies
are shown in logarithmic scale of the x,y-axis.

Comparing Figs. 3 and 6, we conclude that the
number of processes in the queue do not growth signif-
icantly if the Overload Administrator is on. However
we are not able to achieve the constant size of queue.
Moreover, the consumption of system’s resources still
increases exponentially with fq. We give to this re-
sult the following two explanations. Firstly, there is a
”physical” limit imposed on the minimal time of pro-
cesses. If we increase the querying frequency so that
it oversteps this limit, there is no approach that can
avoid increasing the queue size. Secondly, the men-
tioned ”physical” limit depends on several parame-
ters. Modifying these parameters, we could, in prin-
ciple, reduce this limit. However in the used simple
architecture there is no enough degrees of freedom
(parameters) to achieve it. Agents can modify only
the number of started matching agents. This strategy
leads finally to exponential consumption of system’s
resources. In the architectures, possessing more de-
grees of freedom, the more ”intelligent” solutions to-
wards improving load scalability are expected to be
found.

6 Conclusions and future work

In order to employ agent-based technology in the
field of change propagation we performed some ex-
periments which proved the expected benefits of our
proposal. This work represents crucial steps before
implementing the first prototype of our agent-based

approach. As shown by experiments, the highest im-
pact on the scalability represents the system’s load.
The load consists of the number of simultaneously
started querying processes Nq, in our case propagated
changed data, and the frequency of querying fq for
propagation. The proposed agent-based solution sup-
ports large scaling of Nq-load and restricted scaling
(in the given range) in the case of fq-load. We iden-
tified that the fq-load is of ”physical” nature and this
cannot be got round. The consumed resources depend
linearly on the number of started processes (in area
where fq-load is constant). We conclude that the real
implementation of such an agent-based system is fea-
sible.

References

[1] A.B. Bondi. Characteristics of scalability and their
impact on performance. In Proc. of the second
international workshop on Software and perfor-
mance, pages 195–203. ACM Press, 2000.

[2] C. Constantinescu, U. Heinkel, R. Rantzau, and
B. Mitschang. System for data change propagation
in heterogeneous information systems. In M. Piat-
tini, J. Filipe, and J. Braz, editors, Enterprise In-
formation Systems IV, pages 51–59. Kluwer Aca-
demic Publishers, 2003.

[3] A.D. Jhingran, N. Mattos, and H. Pirahesh. In-
formation integration: A research agenda. IBM
Systems Journal, 41(4):555 – 562, 2002.

[4] P. Jogalekar and M. Woodside. Evaluating
the scalability of distributed systems. IEEE
Transactions on Parallel and Distributed Systems,
11(6):589 – 603, 2000.

[5] S. Kornienko, O. Kornienko, and J. Priese. Appli-
cation of multi-agent planning to the assignment
problem. Computers in Industry, 54(3):273–290,
2004.

[6] E. Rahm and P. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal:
Very Large Data Bases, 10(4):334–350, 2001.

[7] O.F. Rana and K. Stout. What is scalability in
multi-agent systems? In Proc. of the fourth inter-
national conference on Autonomous agents, pages
56–63. ACM Press, 2000.

korniesi
Textfeld
164

