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Abstract—In this work we explore several adaptation pro-
cesses in systems with a high degree of developmental plas-
ticity. It is indicated that such systems are driven by two
different forces: adaptation fitness and design goals. The goals,
formulated in an invariant way to environmental changes,
represent an example of a self-concept, used in developmental
processes. This paper gives an example of collective locomotion,
introduces four different adaptive mechanisms and finally
discuss the self-development of such systems.
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I. I NTRODUCTION

Adaptability represents an important characteristic of
systems working in real environments [1]. Different un-
certainties, variation of parameters or even an appearance
of unknown situations requires such mechanisms, which
allow the system to find a compromise between achieving
the main goal, set by a designer, and flexible behavior
to fit environment. Finding this compromise requires three
important mechanisms: plasticity of the system itself [2];
adaptive controller, which uses system’s plasticity to perform
adaptation [3], [4]; and finally a goal, which is formulated
invariantly to environmental influences.

Plasticity of the system can be achieved by exploiting
the principle of heterogeneous modularity [5]: each module
is compatible with other modules and they can assemble
and disassemble themselves into structures with different
functionality [6], see Fig. 1. These structures are denoted
as artificial organisms and represent the key idea of the
SYMBRION [7] and REPLICATOR [8] projects, funded by
European Union.

Structures and functionality of artificial organisms are
closely related to each other, by changing macroscopic
structure, the system also changes its own functionality and
correspondingly behavior [9]. Relation between structures,
functions and behavior can be represented as shown in
Fig. 3. We denote this relationship as “generating” because
the upper level generates the lower level, i.e. structures gen-
erate functions and functions generate behavior. Controllers
in functions and structures – they representthe regulative
level – allow some degree of flexibility (adaptability) for
the system. In details, it depends to which extend a designer
of these controllers was able to foreseen possible changes of

an environment and to integrate a reaction on these changes
into controllers. To react on such changes, which are not
predictable on the design stage, we need to introduce the
second -generating level, which can modify controllers.
The generating level contains different deriving and evolving
mechanisms, which can generate the regulative level and
essentially, when not completely, change the system.

Technical systems possess goal-oriented behavior, but
should be also adaptive to uncertainties and changes in
environment. To some extend, these systems are driven by
two different forces: by a fitness and by a goal. When the
degree of adaptation is low, there are no essential conflicts
between them. However, when a plasticity is high, and
the system can be hindered by adaptive processes from
reaching the main goal, we are facing a new conceptual
problem about long-term controllability of adaptive and self-
developmental processes. Obviously, that either the goal
should be formulated in such an invariant way, which allows
multiple approaches for its achieving, or adaptive processes
should basically be limited.

(a) (b)

(c) (d)

Figure 1. (a) Prove-of-concept: individual robots; (b) Prove-of-
concept: aggregated robots into an artificial organism; (c)Real
prototypes: individual robots; (d) Real prototypes: aggregated
robots (imagesc©SYMBRION, REPLICATOR projects).



This paper is a combination between representing several
achieved so far results and a position paper related to
self-adaptation in artificial organisms. Sec. II, introduces
an example of approaching adaptability for macroscopic
locomotion. We represent four main mechanisms: adaptive
multi-functional local drivers in Sec. II-A, adaptive self-
organization of the level of interacting structures in Sec.II-B,
evolving with using a global fitness and generation by using
the self-concept in Sec. II-D. The unbound information-
based self-concept is discussed in Sec. II-E. Finally, this
paper is concluded in Sec. III.

II. A PPROACHING ADAPTABILITY OF ARTIFICIAL

ORGANISMS FOR COLLECTIVE LOCOMOTION

As followed from the vast literature on the object,
adaptability is related to fitting to uncertainties, introduced
by changing environment, unknown parameters or unpre-
dictable behavior of the system itself. It is often considered
in biological terms of natural evolution [10] or environmen-
tal uncertainty [11] as well as in management and business
processes [12]. There are undertaken several attempts to
create a common theory of adaptability, like the approach
suggested by Michael Conrad [11], however currently each
adaptive system consider the problem in its own research
domain.

More generally, adaptability is closely related to a ca-
pability of a system to react on these uncertainty/changes
and as well as to a capability of a designer to forecast a
reaction of environment (in general case) on the system’s re-
sponse. Therefore we can defined adaptability in term of the
triple-relation: environmental changes→ system’s response
→ environmental reaction. Adaptability is ability of a system
to achieve a desired environmental reaction in accordance
with a priory defined criteria by changing its own structure,
functionality or behavior initiated by changed environment.

We consider adaptability on the example of collective
locomotion, shown in Fig. 2. It displays a 2D section of an
aggregated organism with several active joints. Each of the
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Figure 2. 2D section of an aggregated organisms, circles are active
joints. Shown are two states transient by a collective locomotion.

aggregate modules possesses individual independent motors
(degree of freedom, displayed by a circle) and can actuate
independently of each other. However, in order to move as
an organism, all these motors should perform a highly syn-
chronized individual actuations, which emerge a collective

movement. Moreover, there are several requirements, such
as:

- the center of gravity should not overstep the nodesA
andI, other case the organism will be unstable;

- even in homogeneous case there are several non-
symmetries caused by differences in docking elements, or
more generally by different modules. This leads to non-
symmetrical positions of several active nodes, likeC and
G;

- we require that some structural nodes are e.g. strongly
horizontal (vertical) as e.g.D, E andF .

- all nodes have different load. This is indicated by
different gray level of active nodes.

Each motor is controlled by a non-linear driver, which
control parameters depend on internal sensors (e.g. torqueof
a motor). Without a loss of generality, we say this represents
a simplest adaptive control on the functional level, where
motors are first not connected with each other. This scheme
is sketched in Fig. 3. Now, we insert a structural level, which
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Figure 3. Different levels of adaptive collective locomotion.

depend on morphology of the organism. This level is repre-
sented by a coupling elementC, which creates “communi-
cation channels” between different nonlinear drivers. Since
organisms create generally three dimensional structures,we
expect at least a coupling between three elements (as e.g.
a tensor of the third order). The coupling element contains
values likecijk = 1 (direct coupling between driversi, j, k),
cijk = 0 (no coupling between driversi, j, k), cijk = −1
(phase inversion between driversi, j, k) or even any positive
(amplification) or negative (decay) coefficients. Collective
actuation depends on coefficients in this coupling elements.

There are four different mechanisms, which can be used
in creating adaptive structure and functionality aroundC.
Firstly, individual drivers use local adaptive mechanisms,
know in theory of adaptive control, as shown in Sec. II-A.
Secondly drivers andC represent a coupled map lattice



(CML) [13]. As we see from Fig. 2, nodesB, C, D,
F , G, H have the most intensive load, which can lead
to a more stronger synchronization inC, where as other
nodes do not need any synchronization and their connection
will disappear. In this way, synchronization effects in CML
represent an emerging adaptability created by self-organizing
processes between behavioral, functional and structural lev-
els. This approach is sketched shown in Sec. II-B. Then,
a structure ofC (and so a collective locomotion) can be
evolved. Here we face the problem of deriving such local and
global fitness functions, which lead to a specific collective
actuation. This approach is described in Sec. II-C. Finally, a
self-developmental process, based on a self-concept can be
started. We distinguish two classes of bound, as shown in
Sec. II-D and unbound, as shown in Sec. II-E, self-concepts,
which will be further discussed.

A. Multi-functional, locally adaptive individual motor driver

As described in the previous section, individual motor
drivers should demonstrate diverse dynamic behavior. In
literature there are known different types of continuous
drivers, e.g. [14], however due to technological reasons of
controlling DC motors, we prefer time-discrete systems.
Each time-step can be selected as a small as possible, for
example a fewµsec to guarantee a quality of control. Dy-
namic variables, e.g.xn, represent voltage (current, phase),
which are applied directly to DC-DC convertor or H-bridges.
To obtain diverse dynamics, we use the idea of changing
determinancy order of normal form (NF) and the following
perturbation of nonlinear terms [15]. This can be achieved
when to use hierarchical non-homogeneous coupling for any
well-know low-dimensional system, for example the logistic
map. This approach is very common in the community (e.g.
[16], [17]). In our case, the map has the following form:

xn+1 = cyn + axn(1 − xn),
yn+1 = cxn + bxnyn(1 − yn),

(1)

wherexn ∈ R, yn ∈ R, c is the coefficient of the linear
coupling, b is the coefficient of the nonlinear coupling,
a is the general bifurcation parameter. As turned out, the
dynamics of (1) in fact has little in common with the
initial logistic maps. The system (1) is denoted as the
ordinary logistic-logistic (OLL) map. Several examples of
qualitatively different types of behavior are shown in Fig.4.

As shown in [18], the non-homogeneous coupling in (1)
increases determinancy order of initial NF. This can be
understood as a perturbation of the original logistic map by
couplings. In order to obtain all possible perturbed nonlinear
terms, it needs to calculate the universal unfolding that is
given e.g. by

G(ϕn, λu) = α1 + λuϕn + α2ϕ
2
n + α3ϕ

3
n + α4ϕ

4
n + ϕ5

n (2)

with the codimension 4, whereαi are coefficients. We
can see that non-homogeneous coupling method of OLL

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

x[
n]

a

(a)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x[
n]

a

(b)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

x[
n]

a

(c)

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

-1 -0.5 0 0.5 1 1.5 2

x[
n]

a

(d)

Figure 4. Several examples of qualitatively different types of
behavior of the system (1). Bifurcation diagrams of the OLL map
(1) at parameters:(a) b = 1, c = 0.1, x0 = 0.1; (b) b = 2,
c = 0.6, x0 = 0.4; (c) b = −1.5, c = −1, x0 = 0.1; (d)
b = −0.5, c = −1, x0 = 0.1.

map changes the codimension of local bifurcation from 1
(transcritical bifurcation contained in the logistic map)to 4.

Diverse dynamics of the system (1) can be used in the
mechanisms of local adaptation. Coefficientsa, b andc can
be connected to locomotive sensors (for example a torque
sensor). When a load on motor is increased, a local control
mechanism (e.g. PID regulator [19]) adapt e.g. coefficient
a to provide more current on motor so that to achieve the
required torque on the given load. In the next section we
will see several adaptive effects, which arise when many
of individual motor drives, like (1), are connected into one
system.

B. Adaptive mechanisms based on self-organization

Considering multi-robot organisms, to synchronize the
behavior and especially the collective locomotion for non
predefined morphology is a huge challenge. The first prob-
lem, which occurs in such high distributed system, is how
to reach synchronized behavior and at the same time to
minimize the data load between the robots. Based upon well
investigated CML approach for self-organization, we use this
approach in order to develop adaptive behavior primarily for
collective locomotion problem. The synronization effect of
spatiotemporal chaotic pattern can be applied to multi-robot
organisms and decrease the amount of communication data
between robots.

In our first investigation we consider each site of a lattice
as a communication load between neighboring robots. As
a “basic” system for CML we use an logistic map coupled
homogeneously as e.g. the system (1).



Each basic system is additively coupled with one neighbor
systems. Synchronization appears due to interaction between
nonidentical systems which leads to a locking of their
phases, whereas their amplitudes remain uncorrelated. Our
investigation is done with one-way ring map lattices of
lengthm:

xi
n+1 = (1 − e)axi

n(1 − xi
n) + eaxi−1

n (1 − xi−1
n )

xi+m
n = xi

n

(3)

where xn ∈ R, yn ∈ R, i = 1, .., m, e is a small
coupling parameter anda is a bifurcation parameter. The
synchronization occurs within0.16 ≤ e ≤ 0.19, observable
as bright area in Fig. 5. During the iteration process we sim-
ulated a disturbance in bifurcation parametera, which can
be associated with the disturbance in a communication load.
The simulation shows that if the range of these fluctuations
are small, the system become again synchronized (area in a
red box). Each highlighted area represents ten coupled sites
with slightly changed bifurcation parameter from time step
up n = 150.

CML , Parameters: a_start =  3.89;    a__disturb =  4;       e =  0.16951
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Figure 5. One-way coupled map. Disturbance at different points
(i-axis) are simulated occurred from the time stepn > 150 (n-
axis). In (a) disturbed sites (i.e motor voltage drops) are in a large
distance and do not affect each other. In (b) sites are in local range
and affect each other .

In Fig. 5 a) and b) we investigated the behavior of
four disturbed ranges (i.e. series of motors) and analyzed
fluctuation impact of sites slighted far away or in direct
adjacencies. As can be observed, the synchronization after
disturbance in the bifurcation parameter is better performed
if disturbed areas are close to each other (local impact). On
a real robot organism that means that robots in a local range
perform better synchronization than robots far away from
each other.

This method can be extended by coupling the sites in
the CML in all four directions and allow not only synchro-
nization in chain like multi-robot orgaisms (Fig. 1 (d)) but
also investigate synchronization behaviour in 3D structured
organisms (Fig.1 (a)).

C. Fitness driven adaptability

Because it is very hard, to break down a desired behavior
into the individual behavior of each robot in a swarm
or a multi-robot organism [20], we use bio-inspired ap-
proaches in addition to the adaptive mechanism based on
self-organization from the previous section. The key focus
(see Fig. 6) is the genome which contains the codified
coupling matrixCijk and control parameters. This genome
maps to the coupling of motors within the organism and
thus to the behavior of the organism. A different strength
of the coupling can lead to a different behavior. So in order
to adapt to a certain structure, which requires a non-trivial
coupling, the strength of the coupling can be evolved.

Figure 6. Evolutionary Concept.

A crucial point for evolution is the feedback from the
environment. By evaluation of the current coupling structure
in respect to a desired task (e.g. locomotion), a fitness value
measures the performance of the organism in the current
environment. In the case of locomotion the fitness function
could be influenced by multiple factors like power consump-
tion, number of couplings (high number of coupling may
lead to higher communication traffic) or velocity of an or-
ganism. Unfortunately, some of the evaluated objectives like
velocity and power consumption can build a contradiction.
For example, it may be possible to move very fast, but with a
high need of power. Other locomotion types may be slower,
but consume less power. Consequently, there are several
good candidates converging on a Pareto Frontier [21], [22].
For locomotion, we look for the non-dominated alternatives,
which consumes power in a commensurate ratio to the
required speed and task.

To cover each point potentially in the search space,
mutation operators are used. This mutational steps can range
from a single random change of a cell to swapping of cells or
complete rows. In an environment with multiple organisms,
we can use the evolutionary principle of cross-over. Two
or more organisms can exchange their coupling matrices to



Figure 7. Exemplary organism structures in simulation (caterpillar-
like, ring-like and four-legged organism) [23].

each other. Depending on the fitness value of both parents,
a total or a partial exchange of the genome can be done.
The new structure can be either placed in one individual or
both.

With the help of the Symbricator simulator [23] differ-
ent shapes of organisms can be co-evolved with feasable
genomes. In Fig. 7 different shapes of organisms can be seen.
The comparison of multiple (symmetrical and asymmetrical)
shapes and linked coupling matrices with the reached fitness
values (in simulation) can lead to very efficient organisms
and locomotion patterns.

D. Bound self-concept and structural generation

To explain the idea of a self-concept and a structural
generator, we consider the case when locomotion should
have a specific form, such as a symmetric movement of legs,
segmented (like by insects) construction of body, or there
are imposed constraints or a priory desired properties. The
self-concept contains in a compressed form a description
of these constraints/properties. The notion of self-concept
is originated from human psychological research (e.g. [24])
and is basically related to self-developmental processes.In
this way, the self-concept contains a goal of the system
being invariant to adaptive processes. There are several
mechanisms expressing such an invariant character of the
generating level: symmetries, templates and conservation
laws, production, decomposition rules as well as self-
reference. In this work we can briefly demonstrate using
of symmetries and symmetry breaking [25] as well as ideas
of developmental modularity [26] expressed in the form of
“templates”.

The most obvious way to generate well-scalable struc-
tural symmetries is to create a circulant [27] coupling

C =

(

T 0 c1

0 T 0
cn−1 0 T

)

whereT is a Toeplitz band matrix [28]

T =
( c0 cn−1 cn−2

c1 c0 cn−1
c2 c1 c0

)

(taking into account dimensionsn
for C and for T). The idea of introducingT consists
in a segmented construction of robot’s body and scalable
kinematics of locomotion independently of the total size of
this body. In this way, the basic building block is defined
by circulant couplingC = circ(c0, c1, c2, ..., cn−1). Well-
known property of circulant coupling is a possibility of its

diagonalization by the Fourier matrixF = 1√
n

(

1 1 1
1 w w2

1 w2 w4

)

,

wherew = cos (2π
n ) + i sin (2π

n ). The eigenvalues can be
calculated asλj =

∑n
i=1 ci(w

j−1)i−1. Maximal eigenvalue
λmax = λ1 =

∑n
i=1 ci, i.e. when circulant coupling has

only a fixed number ofci for anyn, the stability and several
other properties ofC are invariant to the dimension of the
whole system. Both, circulant and Toeplitz band matrices
demonstrate ideas of invariances in the self-concept. From
the view point of the group theory,n × n circulant can
be viewed as a cyclic groupZ/nZ of ordern and can be
generated by a generatorgn in Z/nZ.

To integrate symmetry breaking constrains, we can use
approach [29]. Kiziltan and Milan in [29] defined four
generators:Rf , Cf which the flip first two rows/columns
of a matrix andRs, Cs which shift the first row/column to
the last position. For any generators, the notationg◦g = g2,
(e.g.Rf ◦Rf = R2

f ) is used. Any two matrices are equivalent
when they are obtained from each other by applying any of
RnCn generators, e.g.3×3 couplingC has 36 symmetrical
matrices. The idea of breaking a symmetry is to apply con-
strains, which order all symmetric objects, like the proposed
lexicographical order.

Another concept behind self-generation are so-called tem-
plates. They are well-known in cognitive science [30] (also
as “schemas” or “prototypes”), in topological research (in
knot and braid theory) [31], as well as known as “frames”
in AI community [32]. The idea of a template is to describe
most general “stereotypical” properties or features of some
common class of situations/processes/objects. Concrete in-
stance of a template can be reconstructed or generated
by parametrization. There are several attempts to find an
universal template, however it seems that different classes
of solutions need different templates.

Since we are focusing on dynamic properties of collective
actuation, we can assume each motor is driven by a periodic
control. In this way a collective actuation represents a
system of coupled oscillators with adaptive feedback, as e.g.
described in [14]. As known, such systems possess self-
adapting properties. Specific (desired, required) dynamic
motion pattern can be generated when to parameterize the
CML-driving-system with a specific set of control parame-
ters as well as to provide a way to change these parameters,
see Fig.8. Thus we can map the problem of finding a
dynamic template to the problem of finding such a bifurca-
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Figure 8. Template for collective locomotion.

tion dynamics, which property reflects the needed changes.
Speaking more technically, we are looking for universal
unfolding [15]. Obviously, that universal unfolding together
parameter sets can be viewed as templates for collective
actuation. Unfolding can be explained in the following way:
let the normal forms of a local bifurcations be given by

q
n+1

= Λ
u
({α}, {β})q

n
+ g(2)(q

n
, {α}, {β}) +

+ ... + O(g(r+1)), (4)

where the termΛ
u

presents the diagonal matrix of eigenval-
ues,g are the resonance terms, dependent on both{α} and
{β} and r is the determinancy order. Universal unfolding
includes all possible perturbations of this normal form,
which are equivalent to original bifurcation problem [15].In
this way, unfolding represents in some sense an invariance
to perturbations. Finding universal unfolding allows defining
the most general form of the desired dynamics, i.e. template.

E. Unbound information-based self-concept

This subsection summarizes the different topics of the
previous subchapters on a more general and over viewing,
high level description. Self-organization in an organism
takes always part in parallel and distributed in different
levels. At the lower level of genes or cells the sustainable
building pattern and controlling is an adequate definition
of information. Especially on the lower level of genes the
combination of to genes is only driven by an increase of
information. We define the concept of information by four
characteristic attributes:

1) There is a mechanism installable that synchronizes the
communication between two or more agent (partners)
meaning the semantic compatibility of the agents
(active units) that start a communication session.

2) The receiver of a message has in the sense of Pulitzer
not only to acknowledge the received message; but
even more important is the demand, that he “under-
stands” the matter of the sender and behaves (reacts)
like it is assumed by the sender.

3) Two agents (components) only start the “negotiation”
respectively the combination if the total information
of the two participants is greater as the sum of the
individual information (closed system) or it is less
(open, living system).

4) The process of information gathering in (in the sense
of generalized entropy)in a closed system endeavors
information increase in an iterative way. This process
ends if the supremum (maximum) of information com-
bination has been achieved. If the system is not closed
(e.g. continuous energy or heat exchange with the
environment) then the individual information can be
reduced and the combined information of two agents
might be less than their sum of individual information.
In this case we are looking for infimum (minimum) of
the combined information.

Now we proceed to define the concept of information
and we do it on the base of chemical potential, statistical
potential and quantum field theory. Our first expression will
be presented in general. The “chemical potential” of an agent
is:

µj =
K

∑

k=0

M
∑

mj=0

(gjk ln(â†
jk(mj)m̂sjk +

+ g∗jk(ln(âjk(mj)m̂s
†
jk) (5)

The activity of an agent is defined by a creation fermionic
operatorâ† and annihilation operator̂ajk. All interactions
are only generated by message exchange, here represented
by the bosonic creation operator̂ms

†
jk(message creation)

and annihilation operator̂ms(message receive). The activity
operators and the message operators are as usually dynam-
ically governed by ordinary coupled differential equations
that are dictated by an interaction Hamilton operator.

The characteristic of this definition ofµj is the fact, that
the two operatorŝa† andm̂s and their Hermitean conjugated
are complex operator. This means e.g. that beside the claim
of the need of synchronization (compatibility) of two agents
the interacting operations between the two participating
agent can in addition stabilized by phase locking.

The indexk represent all agents, even a self-interaction
is allowed (j = k ), mj describe the internal states of agent
j. The coupling coefficientsgjk define the coupling strength
between the agentsj and k. These coefficients have not to
be symmetric but if two interacting agents are synchronized,
symmetric then these coefficients are symmetric and can
be considered as a metric tensor that describe, similar to a
weight matrix, the connection strengths (signs) of all agents
to agentj. The internal states of agentj are noted bymj .
The transition between a ground statemj = 0 to an excited
statemj 6= 0 is only possible if an arriving message has
been come, and ifµj(mj = 0) > µj(mj 6= 0) is fulfilled.

A further additional benefit of the approach with the
chemical potential is the possibility to describe the adap-
tation of an agent by different phase transitions (e.g. solid
state→ fluid state→ gas state). This can be initiated by
special messages and appropriate coupling constants that
generate an appropriate state transition. By this way it is
obvious that e.g. environmental restrictions are considered as



dedicated messages from outside. Further on, it also possible
to describe diffusion processes by this potential.

The total individual stateSj of an agent j with several
internal states (state sum) is defined by:

Sj =
∑

k

e(µj(<Njk
2>−<Njk>2)−Wjk)/<Njk

2>, (6)

Here < Njk >=< m̂s
†
jkm̂sjk > is the expectation value

for the number of messages that agentj receives in total and
< Njk

2 >=< m̂s
†
jkm̂sjkm̂s

†
jkm̂sjk >. The expression

(< Njk
2 > −< Njk >2) defines the expectation value of

the quadratic fluctuations (dispersion).Wjk represents the
individual knowledge state of agentj after it receives a
message from agentk.

According to rule 1 all agents are cooperative that means
that the different messages are not coming into a bunch but
they obey e.g. the Poisson distribution defining fixed time
differences between two messages.

Finally, the statistical potential of an individual agent is
defined by (only rules 1 and 2 are fulfilled)

Ωj = − < Njk
2 > ln

∑

k

e
(µj (<Njk

2>−<Njk>2)−Wjk)

<Njk
2> ,

where the coupling constants are integrated in the definition
of the chemical potential.

This definition is very close to that one of a statistical
potential. Because we considerµj as a dynamic changing
variable, the individual statesSj can beside physical or
chemical descriptions also characterized by states of non-
linear dynamics like equilibrium states, periodic states or
even chaotic states. The individual information of agentj,
after receiving a message from agentk, is:

Infjk = −
∂Ωj

∂ < N2
jk >

(7)

The total information of agentj is Infk =
∑

k Infjk,
and for agent kInfj =

∑

j Infkj

If two agents j and k (components) try to combine
themselves to a bigger object (e.g. fusion of to genes or cells)
than they have to fulfill the four above mentioned rules,
and the information of the combined component increases
(Infj ◦ Infk > Infj + Infk) if the system is closed; or
decrease (Infj ◦Infk < Infj +Infk) if the system is open
(in physics in this case the free energy is minimized).

This means that the ultimate goal for the fusion e.g.
of two or even more cells is the continuous generation of
information increasing or information decreasing under the
assumption that rule 4 is true. The process of information
increase/decrease usually happens in evolutionary steps and
might never stop (open ended evolution). In mathematical
terms this is an iterative process. Such an iteration might
never stop (open ended evolution). Then we are looking for

the supremumsup(Inf i
jk), whereasi defines the iteration

step.
The activities of different genes/cells are usually clearly

different and they might have strong coupling constants.
This fact implies that such units can operate as “seeds”
for morphological networks that are constructed by strong
message exchange and can be considered as the predefinition
of a final structure. The result is a topological framework to
describe the structure of an organism. The representation of
the structure of a creature can be considered like a semantic
net that is used in image processing to describe structured
objects and their possible movements.

A concept of a fitness function has to be considered
separately from the meaning of information. The fitness
function tells us how well the adaptation of an agent or
set of agents e.g. to environmental restrictions or to other
internal restrictions has been performed. The ramificationof
this view is to consider the fitness in a strong connection
to a given task. The fitness of genes to circumvent a high
mutation rate in order to conquer cancer might be very low
but the information between two genes is in this case very
high because the activities of the affected genes are very
high.

But the opposite case can also occur. The diversity of
genes (cells, species) can be explained by a maximum of
information that fabricate a high adaptation that causes
in consequence a result that creates several high valued
fitness functions in different environments (e.g. different
landscapes, in water or finally in air).

III. C ONCLUSION

In this paper we demonstrated a common picture of
adaptive processes, which include bound and unbound self-
concepts and presented an example of these concepts for
collective locomotion. The self-concept describes a goal of
the system in some invariant form such as symmetries, opti-
mization principles, templates or information-based metrics.
It can even generate an unlimited complexity and diversity,
as proposed by von Neumann, in L-Systems as well as in
self-referred dynamics [33]. Performing experiments with
the scheme from Sec. II represents our further goal.
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