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Abstract. This chapter is devoted to a bio-inspired self-assembling of heteroge-
neous robot modules into specific topological configurations. The approach involves
several algorithmic inspirations from biological regulatory networks for achiev-
ing environmental dependability and considers constraint-based optimization tech-
niques for finding optimal connections between heterogeneous modules. Scalability
and locality of sensor information are addressed.

1 Introduction

Self-assembling is an important process, where a disordered set of existing com-
ponents aggregates into a well-ordered structure by following simple assembling
rules [1]. Such a process takes place on macro- or micro- levels without external
guidance by utilizing several self-organizing mechanisms. A great source of inspi-
ration for self-assembling algorithms is a molecular self-assembling, which appears
in forms of e.g. crystals, colloids, or self-assembled monolayers [2]. Macroscopic
self-assembling is primarily related to a robot research, where robot modules aggre-
gate into complex topological structures to achieve a flexible functionality [3].

A substantial difference between micro- and macro- self-assembling consists
in the size and capabilities of components as well as in the appearing prob-
lems and challenges. On the micro-level such components are molecules utiliz-
ing chemical bounding forces, whereas on the macro-level, components are robot
modules, capable of docking with each other [4]. These modules can have very
simple form [5], or possess several cognitive features, such as sensing, objects
detection/recognition, actuation, communication and others [6]. Microscopic and
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macroscopic self-assembling targets also different objectives. When self-assembling
on the micro-level is normally a large-scale phenomenon appearing as a uniform
structural pattern [7], on the macro-level we are interested primarily in creating
dedicated low-scale structures with a desired functionality. Typically, these struc-
tures are aggregated robots, which demonstrate locomotive functionality in a legged,
clambering or rolling form [8].

Despite differences, micro- and macro- self-assembling shares also several com-
mon problems. One of them is a recruitment of new elements for assembling, where
we can find several bio- and chemo- inspired works [9] leading to an efficient re-
cruitment strategy [10]. However, the major effort on both levels is related to a
guided self-assembling [11]: formation into a desired final form and, as a conse-
quence, a need of multiple optimization steps, required to obtain such a form. Arti-
ficial programmability and self-optimization can be addressed in several ways: we
used here some ideas from gene regulatory networks [12] and its multiple algo-
rithmic inspirations, e.g. [13], [14]. Another interesting scientific challenge is the
distribution of self-regulating mechanisms and integration of multiple constraints,
appearing during the assembling process.

This chapter is based on the previous works [15], [16] and extends them towards
two-steps optimization, which happen during the expression of high-level topolog-
ical descriptions into a concrete configuration and an assembling of modules into
this configuration. Sec. 2 gives a common pictures of self-assembling procedure
and discusses main optimization steps. Sec. 3 introduces several constraints, which
appear during robot-robot assembling, and Sec. 4 considers constraint-optimization
approach. In Sec. 5 we focus on specific tasks such as grouping, or scaling of topolo-
gies. Finally, Sec. 6 demonstrates some results and Sec. 7 concludes this work.

2 General Self-Assembling Scenario

Problems of robot self-assembling and self-disassembling are well-known in recon-
figurable robotics, see e.g. [17] or [18]. Here several high- and low- dimensional
approaches [15],[19] are distinguished. To be more strong in definitions, we define
self-assembling as a process, where robot modules R; establish multiple bilateral
connections Ry : R, (denoted as docking between modules Ry and R, see Fig. 1(a)),
which step by step lead finally to an appearance of the topology @.

Each topology @ has some macroscopic functionality; more exactly, each par-
ticular connection Ry : R, introduces a degree of freedom (DoF) ¢;. As shown in
Fig. 1(b), each connection between modules introduces only one DoF; by a combi-
nation of all DoF, an organism is capable of a collective movement. We express in-
teractions between all ¢; as a macroscopic functionality F of an artificial organism.
Figs. 1(c) and 1(d) provide two examples of such rotating and wheeled macroscopic
functionalities. The relationship between @ and F is complex and depends not only
on the involved DoFs, but also on the environment. We discuss these issues in the
second comment below.
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(d

Fig.1 (a) Examples of a bilateral connection Ry : R); (b) Several 1DoF connections produce
a macroscopic locomotion; (¢,d) Two examples of macroscopic functionalities, achieved by
many robot modules.

The process of self-assembling can be split on different steps, which are sketched
in Fig. 2. Firstly, different types of robot modules R; and other objects (such as
energy “cubes”) are placed on the arena, see Fig. 2(a). In this stage all robots exist
in the so-called swarm mode, i.e. as independent robots. On the second step, they
select from possible existing topologies a small subset @5, which is optimal for
given environment conditions. Such modules, which are needed for these topologies,
group in some area of arena, see Fig. 2(b). This grouping approach is described
in Sec. 5.1. After this first optimization, robots perform the second optimization,
where a set of @3 is reduced to one @. Robots take into account the number of
modules in the aggregation site, their capabilities and availability for the desired
functionality F'. Finally, the chosen modules queue up in a right spatial order for
docking, Fig. 2(c), and dock into an organism @, see Fig. 2(d). Here, robots utilize
different recruitment approaches, e.g. [10], to add a robot into an existing topology.
After docking, all robot modules exist in the so-called organism mode, i.e. they are
co-dependent on each other.

The general scenario, shown in Fig. 2, indicates only the main stages during the
real robot self-assembling. We have to make two comments for this scenario.

1. On-line/Off-line issue. The first comment is related to the way of how to ob-
tain the final topology @. This approach originates from [15] and consists in the
following idea. The set of pre-generated building blocks for patterns {®} can be
maximized so that to cover the most functionally useful behaviors in different pre-
dictable environmental situations. For example, this can be performed by off-line
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(a) (b)

Fig. 2 Different envisaged steps of the self-assembling scenario. (a) Initial stage — all robots
are irregularly distributed on the arena; (b) Approaching of the selection modules for docking;
(¢) Ordering of modules in 2D disconnected form; (d) Docking of modules on 2D grid into
an assembled organism and collective actuation into 3D state.

evolutionary simulation, by utilizing bio-inspired mechanisms from insect or ani-
mals, and in general is done in advance. These patterns can structurally be perturbed
by a few modules on-line depending on the environment. This perturbation creates
some deviation in the expected functionality and behavior, which can be handled
by different on-line adaptive mechanisms. This finally reduces the set { @} to some
@, D, ..., D, which makes sense in a concrete environment. We will denote this
smaller subset as @5. Thus, the problem of finding a specific solution is narrowed
down to the problem of optimizing a deviation from one of the pre-generated pat-
terns, for which all controlling mechanisms exist. Since a linear optimization is very
fast, for example, the linear sum assignment problem is of O(n?) complexity [20],
this approach can be run on-board and on-line.

2. Topology, Functionality and Environment. In general, the degrees of free-
dom ¢; between robots Ry : R, depend on both Ry and R, i.e., we can encounter
the situation when both Ry, R, are relevant, one of them is relevant and none of
them are relevant, see more in [16]. Moreover, a common functionality F' of an
organism is determined by interactions between all ¢;. It is hardly possible to say
in advance which functionality can be useful or not for a particular environment.
There are two possibilities to explore a usefulness of functionalities: performing
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on/off-boar simulation and by trial-and-error approach with different topologies in
real environment. Both have advantages and drawbacks and are used for finding ®.
Essential scientific challenge here represents a programmability of self-assembling
and its dependability on environment (constraints of robots). We need to find a bal-
ance between desirability (design goals) of topologies and capabilities to adapt to
fluctuations of environment.

Thus, the self-assembling requires two-steps optimization:

¢ Environment-dependable generation of topologies from {®} to @5. We can de-
note this process as expression of topology from some general building-blocks-
like description (by analogy with gene expression process) into a set of topolo-
gies with desired functional properties. Example of such approach is discussed
in [15], where we defined a set of operators and basic elements for a generation
of topologies.

e On the second step, @° is optimized taking into account a current situation in
terms of the number of robots in the assembling area, availability for docking,
structure of local environment, assembling dynamics (for example amount of
collisions) and other conditions. As a result, robots firstly produce a final topol-
ogy @, and secondly start a docking approach.

These two steps are demonstrated in Fig. 3. The whole approach consists of three
functional parts (F'1 — F3) and three descriptive parts (D1 — D3). Each functional
part represents in fact a controller, running on-board of a robot module. It takes
as input a corresponding description, executes all necessary activities and gener-
ates an output description. After this, the control over the robot(s) is passed to the
next controller. Thus, descriptions D1 — D3 are interfaces between controllers and
controllers themselves work to some extent as operators over D1 — D3. The main
ideas of F'1 and F3 controllers are already represented in [15] and [10], further we
concentrate on the 2 optimization controller and introduce it in more detail.

F1. Self-regulating F2. Optimization F3.Recruitment

controller controller controller

+ not successful, (partial) disassembling |
. “Expression” P Topology
desprlptl‘?nv of (gegeration) of One or a few OptlleallDr\i assignment Recruitment- manager,
Elas'ﬁ bui g'?ﬁ —| current topologies [~ topologies —3 [OVE T > blan > -based [ macro-
ocks and their from building for self-assembling TatiLs docking -locmotion
connections blocks - functionality scenario

robot’s constraints

T T environment T environment

design goals robot’s _
(desirable functionality) constraints

D1. “Genetic” D2. Topologies D3. Assignment
description description description

Fig. 3 General sketch of the self-assembling scenario.
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3 Optimization Controller: Transition from ®° into @ and the
Role of Constraints

The self-assembling on the stage of optimization controller aims at several tasks:
grouping of robots, identification and collection of constraints, selection of topolo-
gies, which satisfy these constraints, and finally a generation of one concrete topol-
ogy @ from a set of possible topologies @°5. This is done in several ways. Firstly, @3
is compared with the current situation. For example, when other robots are already
building some structure, this structure has a higher priority in the decision process.
When there are no such structures, a robot compares current positions of known
robots in order to decide which pattern is the most suitable for this configuration or
which pattern is the most suitable for the given surface. When a pattern is selected,
a robot solves the constrained assignment problem in order to determine a position
in this pattern, where it goes to dock.

Secondly, when a robot decides about one of the patterns in @3, it is not con-
strained by this pattern, a robot can perturb the pattern ¢; by templates. This can
happen only in two following cases. In the first case, the pattern, generated for n
robots, already has n robots. The n + 1 robot, joining to this organism, starts build-
ing a new scalability core. For example, when an organism with n robots has four
legs, the n+ 1 robot can start building additional legs. In the second case, based on
observation in the environment, a robot can estimate a need of specific perturba-
tions, e.g. to make legs longer to overstep some obstacles. However, the difficulty is
that other robots may not know about this initiative and the whole pattern become
desynchronized. Solution of this problem involves more communication between
robots, as suggested in [15].

A topology @ of an organism is repre-
sented by the connection placeholder Ry, :
R, and DoF functionality in this connec-

tion. For example in Fig 4, six modules are Lf n‘:"
shown, this topology is described by five R, ¢ Ri¢ Rs
connection placeholders. In each Ry : R, : x,

the last ”’x” denotes the DoF: 1 means con- -« —>
nection sidewards, 2 means forwards (there

are only two ways to connect two modules R1:Ry:2 A R

R; and R;). The generation of the mapping [ 2
between robots and connection placehold- —m— R;R, 2
ers represents a classical constrained as- R A

signment problem. Choosing a partner R; 5 |

for docking, i.e. the generation of x§ — )c,]c is —mm— Rs.R;:2
independent of each other. It underlies sev- Rs 1—4

eral requirements: firstly it should satisfy !

local constraints v;, secondly, each xf — x,’(
pair has an associated local cost, and finally, Fig. 4 Topology of an organism, Ry : R, :

the whole appearing topology has its own is a connection placeholder.
global costs.
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1. Connectivity Constraints. As mentioned, there are multiple constraints, im-
posed on connectivity, kinematic properties, heterogeneity and others. Generally,
the connectivity means the number of elements, connected to each of modules. For
example, the central element of the cross has the connectivity 4 (modules connected
from each side). Connectivity constrains the number of connections and can be ef-
fectively utilized in a description of topologies. When c; is the connectivity of the
i-element, where i goes from 1 to n (n is the number of robots in the topology; in
contrast N is a total number of robots), the topology @ can be described as n+ 1 set
(c1,€2,...sCnyc1), ¢4 is a total number of connections in the topology with n robots.
In general case, max. of ¢; is equal to the maximal connectivity of the platform.
All ¢; are re-ordered from cqy tO Cpiin SO that the first element c is always that one,
which has a maximal degree of connectivity. The topology @ can be described as

D= {Cmamcmuxfl -~~acmin+lacminact};ci € {1;2a334}' (D

The description, defined by (1) has different topological properties, see more
in [16]. Generally, there are basic topologies, which are unique, provided the topol-
ogy is coherent (coherent topology = no disconnected nodes). To eliminate discon-
nected topologies, a coherency constraint has to be integrated into Constraint Sat-
isfaction Problem (CSP) and the Constraint Optimization Problem (COP) solver.
Basic topologies can be perturbed by one or several modules, this increases n and
¢;. Such perturbed topologies are not unique. One of possible ways to deal with
perturbed topologies is indicated in [15].

2. Kinematic Constraints. Topology @ defined by (1) creates connections,
which are invariant to robot’s IDs. To integrate kinematics into topology, @ should
be supplemented with a functional description: it means to involve the desired de-
grees of freedom ¢; for a particular connection. Since each node has max. four con-
nections (i.e. in general case different ¢;), the functional topology should include all
of them. We use the agreement, that when only one ¢ is specified for a connectivity,
it means @; = ¢. Now we can generalize @ from (1):

D= ((Cmux : {‘p}mux)a (Cmax—l : {(P}max—l)a ceey (cmin : {(P}min)act) 2)

Thus, ¢ defines a kinematic constraint imposed on a Ry : R, link. To be more
formal, we introduce several following properties.

Definition 1 (Functional Constraint). A constraint ¢ is a functional constraint if
it verifies:

¢ = ((T1,D1),(T2,D2)) (3

with 7; the type of the module i and D; the type of the dock of module i participating
in the link, module 1 being the module having the constraint and module 2 being
the other module.

From the viewpoint of functional constraints, the topology @ can be then defined
as:

@ = ((Cly((Pl,lrn7(P1,cl))a~~~7(cn7((Pn,1a~~~7(Pn,cn))) (4)
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The variable (see description of the CSP approach in Sec. 4) whose value is true
means that there is a link between the nodes, and if its value is false, then there is no
such a link. The cost of the link is the cost of docking for two nodes if no dynami-
cal obstacles were present in the environment. The constraints are the tricky part of
this optimization step. First, we want an acyclic connected topology, which means a
topology without loops. Such a topology is achieved when the two following prop-
erties hold:

Property 1 (Connected Topology Characterization). A topology of n nodes is con-
nected if and only if every subset of i < 5| nodes has at least one link involving
one of its node to one node of the complementary subset of nodes in the group.

Property 2 (Acyclic Connected Graph Characterization). A connected topology is
acyclic if and only if it has exactly n — 1 links between two nodes.

Such a topology is indeed a tree. Writing the constraints for the LP solver from
those two properties is now easy and straightforward. There will be one constraint
per subset of i < | 7], and one constraint to check that the topology is acyclic. Thus,
the topology generated is ensured to be a single tree.

Finally, we include the functional constraints. To do that we need to split the
whole optimization process in two phases: the Constraint Satisfaction and the Con-
straint Optimization Problems. CSP consists of the running LP solver giving an
assignation of the constraints to the nodes. We suppose that this assignation is valid,
i.e., the type of node is compatible with the type constraints. Then we add a con-
straint ensuring that there are enough links satisfying functional constraints. For
instance, if the node i needs to dock to at least Ny of type A and Np of type B, then
there will be two more constraints verifying that the number of links to the node i
of type A (resp. B) is greater of equal to Ny (resp. Np).

3. Local costs. Robots have different on-board capabilities to measure distances
between robots, their orientation, relative rotation and other parameters [21]. More-
over, as shown in Fig. 5(a), robots can measure distance not only to direct neighbors,
but also to any visible object/robot. However, the further away the robots are, the
less accurate is the measurement. Moreover, not visible robots, see Fig. 5(b), are not
included into the local cost matrices.

The measured distance S; ; between R; and R; is one of the local costs for dock-

ing: the closer R; and R; are to each other, the “cheaper” is their docking xf — x,é.

Other costs of x§ — xi are the distance cost aS;:i, rotation cost BS: ,, cost of “be-
ing hidden” §)_,.,, where o, B are coefficients. The cost S;_,., is the price for the
robot R! of not-knowing the situation around R!. For example, when the costs of
connection between x| « x7 are S| 2 = a.S1 73 + BSZ, + S? ,a- More generally,
local costs can include also any other factors, which determine a value of a partic-
ular connection. All local costs between all x§ — )c,]c are collected in the local costs

matrix S.
Since morphogenesis is distributed and egocentric, the generations of x§ — )c,]c
and x,’( — x§ are asymmetric, i.e. from the viewpoint of the module R; a cost of
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(@) (b)

Fig. 5 (a) Local costs, from the viewpoint of a robot; (b) Global view, where some robots
are not visible.

connection between R; and R; may be different than the connection between R; and
R; from the viewpoint of the module R;. This leads to the effect, that the robot R;
knows precisely only its local costs, all other costs can be estimated only roughly.

4. Global costs. Issue of global costs represents a crucial point. In general, it
means how good the whole organism fits the environment and can be expressed as
velocity of motion, energy consumption, weight and any other global factor for a
specific environment. Normally, it requires multiple tests with different configura-
tions and is very expensive or even impossible for on-line estimation in real situa-
tions. Therefore the proposal is to use a set of different a-priori-tested topologies,
whose global costs for different environments are known. During experiments, de-
pending on availability of tools and sensed environment, robots have to agree in
which configuration they should collectively work.

4 Constraint-Based Optimization

The problem of constraint-based optimization can be formulated in two different
ways, as described in [15] and [16]. The first approach, shown in Fig. 6(a), considers
a classical assignment for each ID; — R;, where ID; and a robot’s ID and R; is a label
of a robot in a topology. In the following table we display horizontally costs of all
possible permutations between ID; — R; and vertically the connections R; — R;
from the Fig. 6(a). The cost matrix (example of costs) takes the following form

|1:2 1:31:41:51:62:32:42:52:63:43:53:64:54:65:6

35 40 80 36 30 41 42 31 32 20 55 23 60 21 32

35 40 80 36 30 41 42 31 32 20 55 23 60 21 32 5
40 80 36 30 41 42 31 32 20 55 23 60 21 32 )
35 40 80 36 30 41 42 31 32 20 55 23 60 21 32
35 40 80 36 30 41 42 31 32 20 55 23 60 21 32

[ N S S R
A N bW
%)

v
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Fig. 6 Example of the assembling problem. (a) Approach based on the assignment for each
ID; — R;; (b) Approach based in the linear program for the objective function © with s; ;,
shown are connections only to Rj.

where the assignment should satisfy

4 4
Cipy—ry = D, 2.5, =3. (6)
J

i

The constraint (6) is a degree of connectivity for the main core element R;. The
problem, shown in Fig. 6(a), can be formulated as e.g. quadratic assignment prob-
lem (QAP), see e.g.[22] or as constraint-satisfaction problem (CSP) and constraint-
optimization problem (COP), see e.g. [23]. Since QAP is a NP hard problem, we
will solve this in the CSP+COP way. Solving the assignment problem, taking into
account (6) for all elements, we receive the following assignment matrix

|1:21:31:41:51:62:32:42:52:63:43:53:64:54:65:6

(N

(S SN O SR
PR
S o oo~
[=NeNeleNe)
[=NeNeleNe)
[=NeNeloNe)
eNeNel
S o= OO
[=NeNeloNe)
[=NeNeloNe)
[=NeNeloNe)
(=N eNeleNe)
(=N eNeleNe)
o= O OO
[=NeNeloNe)
=N ool Ne)
—_ o O oo

This approach has two essential drawbacks: need of robot’s ID and large matrices
(5),(7). Thus, this approach was improved in [16] and has the following form. First
of all, we need to define the objective function @, which is specified by s;, see
Fig. 6(b) (here only R, is shown). When n robots are involved into some topology
@, the variables x represent all possible bilateral connections between there robots.
The vector of variables has m components:

n!
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There are several different @, in the experiments we used
si=fi(Rk:Ry) =D(Ri :Ry)+F(Ry:Rp),k,p=1,...mk#p,i=1,...m (9

where D(Ry. : R)) is a distance between neighbor Ry and R,,, F(Ry : R),) satisfaction
of functional constraints (O when satisfied or > maxD(Ry : R,) not satisfied); all
of them are estimated only to locally visible robots Ry and R,. The optimization is
formulated as a linear program (LP), which optimize the linear objective function
O = s x, where s is the vector of costs and x = (x1,x2, ...xm)T is a vector of variables,
which are bounded by 0 and 1. LP is constrained as follows

g:éa x,-G{O,...,l}, (10)

where A is a matrix and b is a vector of numerical coefficients, which form m linear
equations (in general case inequalities). In this form it is known as integer program.
Finally, by solving (10), all variables x; take ”’0” or 1" so that to optimize sTx. Now
A and b in (10) have to be defined; they reflect the connectivity constraints of the
corresponding topology. For the topology shown in Figs. 4 and 6, this leads to the
following linear problem

111110000000000 o 3
100001111000000 — 2
010001000111000 Cmax_2 2
001000100100110 Cmin 2 1
|ooot100010010101 |, | cmines BE
A=1000010001001011 |25 ¢, [> 2= 1| 4D
L11111111111111 o 5
000000000000000 0 0
000000000000000 0 0

As mentioned, all ¢; are disconnected from robots, i.e. we have to map the set of ¢;
to all possible combinations between these robots

(Cmaxs Cmax—1 +-s Cmin) — Permutation(Ry,Ry,...,Ry). (12)

Since the number of permutations is equal to n!, computational power of the most
of microprocessors allows computation for n below 10 closely to real time. This
is more than enough for a large diversity of cores, complex topologies are created
through scalability. Since variable x; points to connections between robots, defined
by (12), the vector b is equal to the set of ¢; in the order from c¢;ugy tO cpin and the
matrix A creates corresponding placeholders. There are several comments to this
approach.

1. All topologies have a list of associated constraints 1" such as a total N of robots
or requirement on heterogeneous modules. Moreover, each topology has a list of
global costs: consumed energy, velocity of motion on a normal surface, geom-
etry of concave and convex obstacle treatable with this topology or a possible
geometry of docking elements.
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2. Before start self-assembling, robots check whether N of available robots match
the set of possible topologies. For instance, when there are topologies requir-
ing {15,17,22,25} robots and there is only 20 available robots, they can self-
assemble only into first two topologies.

3. Several topologies require tools or specialized robots. Robots should check avail-
ability of these specialized robots and correspondingly limit the set of possible
topologies.

4. Self-assembling starts from the core element with the highest degree of connec-
tivity. When such a core element is already built, robots consider the next element
with the lower degree of connectivity and so on, until the whole structure is as-
sembled.

5. When the selected topology is already partially assembled, and more free robots
arrived to the assembling place, robots can decide instead of disassembling and
new assembling to create a new core in the already assembled structure. Prereq-
uisite is that the topology can be scaled up in the number of cores.

5 Grouping and Scaling Approaches

The CSP/COP-based optimization approach, described the previous section, is a
distributed and decentralized process that each module in the assembling area per-
forms. It cannot be described as a single task to achieve, the whole approach depends
on interactions between modules and particular optimization processes running on-
board. In this section we focus on two other tasks, which precede or follow the
CSP/COP optimization: grouping and scalability approaches for different cases of
N >n.

5.1 Grouping Approach

Grouping is required for the case when the number of available robots N is larger
than the number of required modules n in a topology. Thus, for N > n we need
to choose the modules that will participate in the aggregation. The first idea is to
choose the n nearest modules. This strategy works for topologies without any con-
straints on the type of modules, however can fail in other cases. Consequently, we
need firstly to consider the type of modules in the neighborhood, and secondly, if a
neighbor belongs to the already finished topology, it has to be removed from the list
of available robots. Moreover, robots can have internal constraints that make some
actions more difficult than others. For example, non-holonomic robots will not be
able to move laterally, straight forward movement is cheaper than moving in any
other direction. Hence, distances between A and B, from the point of view of A will
be the complexity of A to reach B.

To perform grouping, a simple function selecting iteratively each nearest neigh-
bor can be considered. However, this can lead to a non-optimal solution. To perform
the grouping optimization, an application of LP solver is more suited. Each neigh-
bor has assigned a Boolean value by the LP solver: true if and only if the module
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is selected to be part of the group. The objective function is the sums of distances
(as described in the previous sections) between the calling module and the selected
modules of the neighborhood. The involved constraints are the number of modules
selected (equal to the number of modules in the topology) and the type constraints
(there is at least as much robot of a given type as required by the topology type
constraints).

5.2 Scaling Approach

There are two general cases, where we need to consider a scalability of self-
assembling. Firstly, we frequently encounter the situation, when the number of avail-
able robots N is larger than the number of robots in the topology n. Here there are
several strategies, which are considered below. Secondly, the topology with 7 robots
can join to another topology of m robots; in this case the scalability represents the
generating problem for n + m topology. Such problem can be solved by morphing
algorithms when basic hardware modules are able for this functionality. In our case,
we solve the problem of n + m topologies by a disassembling of one topology and
an assembling of free robots into another one.

As mentioned, in the first case, there are several possibilities to scale N in the
relation to n:

(1) for N =xn,x=1,2,3, ..., the topology with n robots can be replicated x times.
Each of these new topologies is an independent structure. This is the simplest form
of scalability, which can be denoted as the behavioral scalability.

(2) x topologies from the previous case can join into one common structure. This
is typically segmented body construction, where n robots within one segment are
repeated x times. This is the structural scalability.

(3) the robots from N mod n > 0 cannot create a new topology. These robots are
still useful for the already existing topology, as e.g. energy reserve, so these robots
can perturb the topology @, this is the perturbational scalability.

(4) finally, N mod n > 0 robots are not aggregating with any other structures, they
build a “reserve” for e.g. self-repairing.

The experiments performed in [16] and here indicated that a combination of the
(1) and (4) strategies is the most useful approach for creating multiple artificial
organisms. All results described in Sec. 6 utilize this strategy. For the cases (2) and
(3) we need to recalculate kinematic constraints. For this we need to perform hybrid
topological-kinematic techniques, which are described e.g. in [24].

6 Implementation and Results

We performed several series of experiments with real robots and in simulation. The
implementation on the real platform was intended to test computational properties as
well as to estimate the level of distortion in creating the objective function ©. Since
currently there are not enough robots for testing scalability, several experiments
are performed in simulation, which is done in AnyLogic. For implementation of



136 S. Kernbach, B. Girault, and O. Kernbach

LP solver for CSP, we used Ip_solve 5.5 routine (see Ipsolve.sourceforge.net) of
Mixed Integer Linear Programming solver (C++ version is used for real robots, Java
version is used for simulation). Robots use Blackfin double core as the main CPU (in
each module) with 64 Mb SDRAM on board. The robot arena was approximately
50x larger than the size of the robot. For measuring the time of experiments, we
use the notion of “iteration of the autonomy cycle”. This is an internal value of
robots and allows estimating the running time more precisely to the steps of the
CSP/COP approach (and not to the motion of the robot). Tests are performed with
two topologies: ”T”-like form shown in Fig. 4 and a snake. These topologies are
used also for scalability tests. Additionally to experiments presented in [15], [16],
we explored here different strategies for a grouping approach and its impact on a
performance, and measured a performance of self-assembling at different scaling
parameters.

Fig. 7 Ordering phase of the self-assembling approach. Five robots approached each other
and moved into right spatial positions for creating a topology shown in Fig. 2(d). During this
approach, a massive collision avoidance behavior can be observed.

Grouping approach. As mentioned in Sec. 5.1, grouping is a necessary step be-
fore self-assembling. It allows selecting the appropriate n robots from the swarm of
N robots for building a topology. Implementing a grouping strategy, we encounter
several difficulties. First of all, robots are not always visible to each other, see
Fig. 7, i.e., estimation of the most closest robots to a group is in many situations not
possible.

In the implemented strategy, we add a robot into a group when it is visible at
least to one robot which already included into a group. Assigning to a group is
performed by the “first visible, first served” principle. When a robot receives an
invitation to join to a group, and can confirm or reject it. When no other invitation
is accepted, a robot confirms its intention to join to the group and moves towards a
visible inviting robot. When a robot approached the group closely enough, it starts
CSP/COP procedure and waits a resolution of the assignment problem. After this, it
moves to the right spatial position (the ordering phase).
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To evaluate performance of this strategy, we used two other approaches: a candi-
date for joining a group was selected randomly based on WiFi connection (i.e. no
position information), and the ideal case when only the closest robot was invited
to join a group (by using global information). In Fig. 8 we plot the performance of
the self-assembling with the neighbor-based grouping strategy and with a random
grouping. In Figs. 8(a), 8(b) the performance is estimated as the sum of distances s;
between all robots of a group, whereas Figs. 8(c), 8(d) demonstrate the performance
as the sum of distances s; between all robots. Fig. 8(d) shows the ideal case with the
closest neighbors. We can see that selection of robots for grouping has an impact on
the assembling strategy. In many performed experiments it reduces the approach-
ing time on 30%-50% and makes the ordering phase more early. In ideal case the
ordering phase starts almost immediately after the start of experiments.

The second series of experiment was performed to investigate the scalability per-
formance of the self-assembling strategy. The idea of this experiment originates
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Fig. 8 Different grouping strategies, n = 5, N = 25. (a) Grouping of locally visible robots
to the each other, shown is the sum of all distances between the robots in each group; (b)
Random grouping, all robots are equally distributed on the arena, shown is the sum of all
distances between the robots in each group; (¢) Comparison between both strategies, shown
is the sum of s; over all robots; (d) Ideal grouping strategy, shown is the sum of s; over all
robots.
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from [16], where we proposed to increase a connectivity of robots. It is achieved
by movement of all robots to a specific point on the arena (it was a right, upper
corner, which can be approached by using a compass information). When all robots
are closely enough to each other, they can perform a faster grouping, creation of
cost matrices and ordering. The encountered problem was that robots massively in-
creased a number of collisions and this slowed down the performance. Moreover,
the more robots are participated in the experiment the higher was the number of
collision, and the slower was the assembling. In Fig. 9 we investigated the number
of collisions for different grouping strategies and for different N of robots. We en-
countered that the collision behavior has two well observable phases: the low-slope
phase during the grouping and the high-slope phase during the ordering. The slope
of the ordering phase is almost the same at all strategies, and is independent of the
number of modules. This can be explained by the Fig. 7, where we can see that the
ordering causes strongly local collision avoidance behavior and so is independent of
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Fig. 9 Scalability performance as a number of collisions over the running time of an exper-
iment, R is the sensing radius, R = max.: a robot can observe the whole arena, R = 5,10: a
robot can observe a range of 5 and 10 body lengths. (a) Scalability in relation to different
grouping strategies and different visibility radii; (b) The strategy with random grouping and
with the minimal sensing radius, shown are N of collisions for different N of robots; (d) The
strategy with neighbor grouping, shown are N of collisions for different N of robots.
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the total number of modules. However, different grouping strategies have different
collision performance. As it follows from Fig. 9(c), the neighbor-based grouping
has the best scalability properties (it is almost independent of N), whereas as the
random-based strategies, especially with limited sensing radius, has a worse per-
formance when increasing the number of robots. This behavior we observed also
during earlier experiments. Thus, the best scalability strategy is to increase the level
of locality not only for all robots during the aggregation, but also to increase the
level of locality for the grouping phase.

7 Conclusion

This chapter is devoted to a self-assembling strategy, which utilizes generating and
optimizing approaches, known in biological regulatory networks. We primarily fo-
cused here on the optimization controller, which narrows down the set of generated
topologies to a particular description of connections between modules and performs
local optimization defined by the objective function. This function takes into ac-
count connectivity and functional constraints, local and several global costs. Due
to flexibility of costs and constraints, this approach is very useful for modules with
different geometry and functionality, i.e. for heterogeneous reconfigurable robots.

For experimental part we mainly worked on the grouping strategies and scalabil-
ity performance for different such strategies and different N. These experiments are
additional to the already published results. We estimated that neighbor-based group-
ing, even not optimal in a global sense, can provide shorter aggregation time due
to spatial optimization process. Non-optimality of spatial grouping is substantially
limited by the capabilities to detect a neighbor robot. To improve the performance,
we suggested increasing the level of locality by pre-aggregating all robots into a
specific area of the robot arena. In the previous experiments, this strategy created
multiple bottlenecks due to massive collision avoidance behavior among robots. In
the improved approach, when a local grouping is selected, the pre-aggregated self-
assembling is well scalable to different N, tested for n = 5 and N between 5 and 30.

For further works, we would like to verify these tests for the topologies shown in
Fig. 2 with three different types of robots. It is also of interest to investigate the influ-
ence of environmental conditions for very simple robots (like chemical molecules)
and to estimate whether it is possible to transfer results from macroscopic to a
microscopic self-assembly.
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