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Abstract—An efficient search algorithm is very crucial in tration gradient [2]. In case that the forager can only detec
robotic area, especially for exploration missions, where the target the randomly located objects in limited vicinity, randomlkva
availability is unknown and the condition of the environment is performed to explore the environment. The best staistic

is highly unpredictable. In a very large environment, it is not o
sufficient to scan an area or volume by a single robot, multiple Strat€gy of optimizing the random search has been addressed

robots should be involved to perform the collective exploration. In By many researcher. In [2],[3],[4].[5], it is shown that tran-
this paper, we propose to combine bio-inspired search algorithm dom search efficiency depends on the probability distriouti

called Lévy flight and artificial potential field method to perform  of the flight length taken by the forager. When the target sites
an efficient searching algorithm for multi-robot applications. The are sparsely and randomly distributed, the optimum styateg

main focus of this work is to prove the concept and to measure the L . .
efficiency of the algorithm. Several experiments, which compare & specialized random walks movement, calléy flight [4].

different search algorithms, are also performed. Lévy flight is a random walk mechanism that has tHevy
probability distribution function in determining the lethgof
the walk. By performing Evy flight, forager optimizes the
number of targets encountered versus the traveled distance
The idea is that the probability of returning to the previous
site is smaller compared to other random walk mechanism
Unmanned area exploration is crucial for investigating big4]. This Lévy flight motion has been found among various
logical species, monitoring pollution, disaster warniggtem, organisms, such as marine predators, fruit flies, and hoeey b
and search-rescue mission. Autonomous robot equipped wWij4].
sensing peripherals is deployed in the environment to fied th In this paper, we proposed to combinévy flight mech-
object of interest, i.e., fire spots in the jungle, missingckl anism and artificial potential field method. Theéuy flight
box from a crashed airplane, or to measure a concentrationatgorithm will generate the length of the movement, while th
hazardous materials. However, in a very large environnientartificial potential field will improve the dispersion of thie-
is not sufficient to scan an area or volume with a single robgiloyed robot by generating repulsion forces among robdte. T
Many autonomous robots, which have wireless communic&tention of finding an optimum random searching algorithm
tion capabilities are deployed to improve searching aayuracame from ANGELS and SwarmRaobot projects [19],[10]. In
Therefore, beside having an optimal search strategy, tltdewhone part of ANGELS project scenario, several underwater
system becomes wireless mobile sensor network that is @blertobile robots will be applied for searching an object of iat
perform distributed sensing in a dynamic environment. & thin underwater applications. Simulation platform is used fo
number of autonomous robots is large, collective phenomeingestigating the feasibility and the efficiency of the rand
may also be observed. search implementation. The usage of simulation environmen
There are many bio-inspired examples of how to realizdso simplifies the observation during experiment. In thisky
efficient foraging. Animal optimize its search for food witha simplification of 3D underwater environment from the real
physical and biological constraints, which restrict thbdgor. ANGELS scenario into 2D simulative surface is applied for
Evolutionary process through natural selection led oumeti the first random search experiments. Once the efficient rando
to highly efficient and optimal foraging strategies, e.gwhosearch algorithm is developed, then it can be implemented
lobster localize and track odor plumes or bacterial cheri®tain the real Jasmine robot platform for surface applicatign b
mechanism used by e-coli to response the nutrition concenedifying several parameters, and later can be extended and

Keywords: Multi-Robot, levy Flight, Artificial Potential
Field, Random Search Algorithm

. INTRODUCTION



[3]. Other difference came from the intention in deciding th
length of the movements. In the Brownian walk, the scale of
the movement is determined by the organism. However, in the
Lévy flight, the larger scale of the movement is defined by the
distribution of the object of interest, thus makegwvly flight
more flexible and adaptive to the environmental changes [3].
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Fig. 1. Swarm robot platform(@) Micro-robot Jasmine llip{b) ANGELS
Underwater Test Platform. 0.5

0.4
improved for the real 3D environment with underwater robot.

In order to measure the performance of the algorithm, severa 03
experiments are provided by changing several parameters in
the algorithm. Furthermore, comparing the algorithm with a
usual random search method is also necessary. 0.1
The main focus of this paper is not only to measure the
efficiency of the searching algorithm by using simulatioat b
also to find an appropriate solution for designing a generic
framework to implement thed&vy flight algorithm for robotic Fig. 2. Comparison of Levy Probability Distribution for different i of
applications. However, the generic framework must be appro
priate both in simulation and in real robots. Furthermoimges
the architecture of the swarm robot should be simple andP. Lévy in 1930s discovered a class of probability distri-
small, an implementation that has only light computation®ution which has an infinite second moment and governing
requirements is crucial. the sum of these random variables [1]. The process is called
The rest of this paper is structured in the following way. Th&table, if the sum of these variables has the same prolyabilit
Secs. Il and IIl describe theoretical approaches undeylgie distribution as individual random variables. A typical exze
Leévy flight and artificial potential field. Secs. IV and V aredf the stable process is the Gaussian process. While the

devoted to implementation and experiments, whereas Sec.&aussian process has a finite second moment. The stable
concludes this work. probability distribution that has an infinite second moment

is then called the &vy probability distribution and has the
following form [1]:

0.2

[I. LEVY FLIGHT RANDOM SEARCH

Biological creatures perform different exploration aitias: 1 o .
e.g. to search for sources of food that are not visible in the P, ()= ;/ e™ 79 cos(ql)dq Q)
immediate vicinity of the animal, to search for a new site, e

to search for a mate, or to avoid predators. The knowledd&e distribution is symmetry with respect to= 0, v is the
about the condition of the environment implies the compjexi scaling factor andv determines the shape of the distribution.
of the searching strategy. If the environment is unchangirde required value of is between 0 and 2. The parameter
and highly predictable, animal is able to develop knowledge determines the shape of the distribution in such a way that
of where to forage. If the resource availability is unknowslifferent shapes of probability distribution in the taigiren can
(according to the perception of animals) and the conditibn Be obtained. The bigger is the parametethe shorter the tail
the environment is unpredictable, animals have to condarct n region. In the limit ofa is 2, the distribution will become the
oriented searches with little or no prior knowledge of whereaussian distribution and no longeé\y distribution. Thus,
and how resources are distributed. Regarding the physiglfixing v = 1, for large values of, (1) can be approximated
and biological constraint, the capability to find the resesr by [1],[4]:

efficiently will minimize the risk of starvation [5]. Po(D)ml7" (2)

I E_,rO\I/vnian walk andhk'evy flight are two vx;}ell known bio- \;q\vanathan et al. [4] derived several equations in order to
ogical random search. For many years, the Brownian walftimize the levy flight's parameters. They describe that the

was the most used model for describing non-oriented animgl o, humberv of flights (movements) between successive
movement [1]. The main difference between Brownian rando

walk and L&vy flight is that 1evy flight uses Evy probability tdrget sites is approximated by.

distribution that has power tail instead of using normal &au N ~ (i)%’ (3)

sian distribution, that makes the probability of returnitm Ty

previously visited site is smaller, and therefore advaebaig where) is the average distance between two successive target

when target sites are sparsely and randomly distributed [&ites andr, is the sensing range of the forager. They also



describe that the optimal efficient value of alpha can be From the repulsion force equation (9), it is concluded

approximated by: that the robot is required to discriminate between robots
a=2-0, (4) and obstacles, and to measure distance only to robots. In
Jasmine robot, the recognition system is implemented by IR
where . P . . . ) .
1 identification during active and passive sensing. Howewer,
B (in2)2’ () the ANGELS test platform, blue light system is applied to

replace the IR sensor, because blue light is less absorbed
So in the absence of a priori knowledge about the distributinderwater compared with IR light.

of target sites, an optimal strategy for a forager is to ckoos
o =2 when 2 is large but not exactly known. IV. IMPLEMENTATION FRAMEWORK

. ARTIFICIAL POTENTIAL FIELD METHOD A. Generic Framework of the Implementation

Artificial potential field creates a field, or gradient, among Oné main goal of this work is to implement a generic
robots and their environment. This method was original§iPlementation framework of thedvy flight random walk in
invented and introduced by Khatib [17] for robot maniputatdh€ robotic platform. The generic implementation framekor
path planning and is widely used in many variants in thé expected to be able to simplify the modification of the skar
robotics. The basic idea of the potential field approachésais algorithm and parameters during the experiment. Perfocman
the robot is attracted towards the goal, i.e. searchingtagy investigation can be performed by comparing the result of
object of interest, while being repulsed by the obstacleshvh the implementation with some usual search methods. The
are known in the environment. The superposition of all fercdramework should also simplify the calibration process in
is applied to the robot and smoothly guides the robot towate real robot implementation. Therefore, simple kinemati
the goal while simultaneously avoiding known obstacles. ffuation to model the robot movement is derived:
this paper, we proposed for implementing only repulsion

forces among robots to improve the dispersion processglurin = [i(t) veosH(t) 0
deployment. However, the repulsion forces is not applied fo y(t)| = L(t) |vsinf(t)| + (1 = L(t)) | 0 (10)
obstacles. g'(t) 0 w(t)

If we assume a differentiable potential field functibiiq),
we can find the related forcE(q) at positiong = (z,y)

F(g) = —YU(g), © | . . . Tl
whereVU (q) denotes the gradient vector bf at positiong. ' ‘ | ‘ ‘ ‘ | ! ’_‘ H '
?Tg :
YU = @) (@ (b)
% Fig. 3. (a) Waveform for fixed-length random walkb)Waveform for Levy-

. . L. flight random walk.
The idea of the repulsive potential is to generate a forcengmo

robots to repel each other. This repulsive potential shbeld Here, x(t) and y(t) are position of the robot at time
very strong when the robot is close each other, but should ngtCartesian coordinate(t) is the orientation of the robot,
influence their movement when they are far away from eaghis the constant linear velocityl.(t) is the control value

other. One example of such a repulsive field is [17]: to turn on and to turn off the movement of the robot, and
Lhren(=2x — L) i p(q) > po w(t) is the angular velocity of the robot randomized by the
Urep(q) = { 2P pla) "0 if o(q) - P07 (8) normal Gaussian distribution function. Within this equoati

the period of L(t) performs the length of the robot walk
wherek,., is a scaling factorp(q) is the minimal distance and the valuev(t) determines the orientation movement of
from ¢ to the adjacent robot ang, the threshold value of the the robot. The value of.(t) comes from the square wave
distance. The repulsive potential functioh., is positive of oscillator output, where the waveform period is determined
zero and tends to infinity ag gets closer to the other robot.by the type of the random walk. The period éft) and
This leads to the repulsive force: w(t) value are parameters to be modified during experiments.
F. = —VUe(q) = ) This principle is bio-inspired controller implementatisimilar
—rep - rep to Central Pattern Generator (CPG) that can be found in
1 1y_1 g”dncighbor . some animals locomotion mechanisms and inspired by [2] for
krep( - )p2(q) 2(q) if p(q) > po, bacterial ch taxis f ina imol tati
0 i p(q) < po. acterial chemotaxis foraging implementation. .
As described before, the square wave oscillator outpuesriv
Thus, the amount of the repulsive force will accelerate ttike activation of the locomotion system of the robot. Since
robot movement to the opposite direction of the potentidd fiethe possible value of the driver signal is only '1’ and '0’, a
source. simple 'on-off’ controller is required. Fig. 4 shows the Fén



L(t)=0 converges to the &vy probability distribution with largen

Change (the usual value of, is 100 [1][6]).

direction Since Gaussian random number is required for tiéeyL
e flight implementation and for randomizing the direction of

""--r-‘?fge% moving, an appropriate Gaussian approximation is investi-

""*-‘-’\’?9’ gated. Box-Muller transformation[8] is chosen in the imple
E mentation, since it is a well known numerical approxima-
Catching tion for generating Gaussian distribution random number an
thetarget has many available programming implementation. Box-Mulle
transformation is popular, because it is simple and fadhifgin
level language implementation [9].

Colission

Avoidance =

(obstaclein oppositedirection)
or (no other robots nearby)
other robots nearby
>

C. Robotic Simulation Platform

B rutthe Simulation platform is required, because the real robotic
pheromone platforms do not have a global localization system and also
have complex kinematic models. Simulation platform can-sim
plify the modification of control parameters and environtaén
condition. Additionally, it is also more scalable, thus reak
some experiments with hundreds of robots possible. Webots
State Machine (FSM) model of the designed controller. Durirfrom Cyberobotic is chosen as the simulation platform.
the initial state of the controller, robot performs the isidin For surface application, later the random search algorithm
avoidance. After the first positive period, the value of fii¢) Wwill be implemented in the Jasmine robot. Therefore, the
becomes '0’. The robot changes the direction during theo’zerrobotic platform in the simulation must have similar kindima
phase withinw(t) angular velocity. The length of the positivemodel and sensing capability with the real Jasmine, se€esFig.
phase is defined by the result of théuy probability function Jasmine uses six IR sensor for active sensing and communica-
generator or the period of the constant frequency osaillatgion. In the locomotion part, two differential wheels withd
The robot will enter the 'Collision Avoidance’ state agais aDC motors are located on the right and on the left side of
soon as the value of.(t) becomes '1'. If there is anotherthe Jasmine robot. Therefore, similar sensor and locomotio
robot in its sensing range, the controller state will move tmechanism are also realized in the simulation robot.
the 'Potential Field Routine’. In this routine, controlleiill -
measure the distance to the adjacent robot for calculati //'<
the repulsion force, and then accelerate the movement of = 41~
robot to the opposite direction of the adjacent robot withi '\ /
the calculated repulsion force. Finally, if the robot fouthe SOm ]
object of interest during the robot the 'Collision Avoid@ic V" jomm feee
state , it will enter the 'Catching Target’ and will put the \5\9[?71\@8;;% \
artificial signature that has repelling field. Here, the taadk N/ ook
is implemented as a specific message content to the targe. .» i
turn on the 'repelling signal’. Therefore, other robots,ieth @ (b)
are aware of the ,repell_lng.SIQnal,’ will avoid the .area ardu Fig. 5. (a) Radiation Pattern of Sensing for Jasmine [1@]) Robotic
the found target and will disperse to other foraging area. platform in the simulation.

Potential
Field

Routine

Fig. 4. Finite State Machine Model of the Controller.

B. Lévy Flight Implementation

An algorithm for generating random numbers basedewl. V. MULTI-ROBOTIC RANDOM SEARCH EXPERIMENTS
probability distribution is needed to determine the lengitthe A, Experimental Setup
walk of the robot during the foraging phase. Such algorithm
was introduced in [1]. This algorithm requires two indepemtd
random variabless and b which have a normal Gaussian
distribution from this nonlinear transformation

Big simulation arena that emulates the environment is
necessary to implement swarm robotic experiments with many
robots. Therefore, an arena that has20 simulative 'meters’

of size is prepared. Several obstacles with different simd a

m=—— (11) shape are placed randomly on the simulation arena, see.Fig. 6
|b| = Nevertheless, objects of interests as searching targetalso
within the nonlinear transformation, the sum of variablagw prepared. The object of interests is a passive static rétaot t
an appropriate normalization transmit a specific message within the same range as robot
n sensor.
2, = lemk (12) The main purpose of the experiments is to measure the
ne 1 minimum time travel that is required by all robots to find all



mechanism allows the robot to avoid each other and thistaffec
the pattern of the length of walk. Every time the robots meet
each other, robot will change its direction earlier then ex-
pected, this reduces the required length of walk determiyed
the Lévy distribution function. Therefore, reducing searching
time by increasing the number of robots will be saturated in
some points.

In order to perform collective behavior, robot must have
communication peripheral to propagate information regard
the individual progress to other robots. Swarm commurooati
can be performed in many different ways, i.e., by using direc

Fig. 6. Simulation Arena. communication, by using the environment (stigmergy), or by
using bio-inspired pheromone. In this experiment, indirec
communication approach through beacon is applied for infor

of the foraging targets. Several experiments performethis t mation sharing among robot. If one robot can find a target,
paper include comparison for different numbers of robots ihwill leave a signature on the target, so that the other robo
the searching mission, comparison with other random waikll aware to this signature and disperse to the rest areheof t
algorithm, and investigation related with the applicatioh environment to find other targets. The awareness of the robot
the artificial potential field, see Fig. 7. The other randori® recognize the signature is wider than the sensing range of
walk algorithm that is compared with thegly flight in our the robot. Nevertheless, instead of only leaving signatutee
experiment is fixed-length random walk. found target, other useful information might also be shared

From the generic framework, it is described that severBHrthermore, it is nice to have a signature on the found targe
variable values can be modified during the experiments asighce it simplifies the observation during the experiments.
others remained constant. The constant linear velokitg
configured as 60 cm/sec. The period of oscillator value '

control the transition of the walk and to stop the phase isriak Searching Time vs Number of Targets
from the output value of the évy distribution generator. It 3500
can be also replaced by a constant frequency oscillatohéor 1 3000 Pl
fixed-length walk mode. Therefore, the period of the osimifla | 2500 7
determines the length of the robot walk in the recent phag ¥ 2000 A

9 P E 1500 / —t—FL

and the frequency of changing movement direction.
q y ging o o~ .
500 - = L+P

a
1 4 8 12

Mumber of Targets

Fig. 8. Multi robot random-searching experiments, searching time wsoeu
of targets, number of robots: 10, L+Péky random-walk and Potential Field,
L: Lévy random-walk, FL: Fixed-length random

@

Fig. 7. (a) Single robot random search in the simulati¢b) Multi robot . . . .
random search in the simulation. From the experiment results in Figs. 8 and 9, it can be

seen that the &vy flight is effective for different numbers of
robots. However, if the number of robots exceed some limit,
its effectiveness has essential different with the fixedth
During the experiments, several individual robots are ramovement. The large number of robots forces an individual
domly deployed in the arena to search the targets. For eaobot to be more frequent in changing direction to avoid pthe
experiment, different number of robots and targets are peobot during foraging. Therefore, if changing a movement
formed. Every experiment is executed in 20 trials on diffiéredirection to avoid other robots becomes too frequent, nmiketho
environmental conditions (e.g. position of the targets aridr determining the length of the walk has less impact on the
position of the obstacles). searching performance. Nevertheless, comparing to thd-fixe
Since there are tens of identical robots deployed togetHength random search, theely flight is still more effective
in the environment, different swarm-like strategies can Her multi-robot application in every experimental conditi
explored. Intuitively, by using more robots in the searghinFinally, it can be shown that the implementation of the aitfi
process, the searching time will reduce significantly duéhéo potential field among robots also increase the performahce o
increasing number of robot. However, the collision avoman the searching algorithm.

B. Experimental Result



Searching Time vs Number of Robots
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Fig. 9. Multi robot random-searching experiments, searching time wsen

potential field.

ACKNOWLEDGEMENT

This work is supported by FP7 EU Project ANGELS -
ANGuliform robot with ELectric Sense, the grant agreement

no.

231845. Additionally, we want to thank all members of

the projects for fruitful discussions.

(1]

(2]

of robots, number of targets:8, L+Peiy random-walk and Potential Field, [3]

L: Lévy random-walk, FL: Fixed-length random

VI. CONCLUSION AND FUTURE WORK

(4]
(5]

In this paper, we investigated an efficient random searcfg

algorithm for multi-robot application that is crucial in ge-

ration of large areas. The proposed idea consists in using tH]
Lévy flight algorithm for determining the length of the walk
and atrtificial potential field to improve the efficiency of the(s]
dispersion during deployment. The approach has the adyanta
that it does not require centralized control or localizatio
system, and will therefore scale the possibility to applyyve [9]

large number of robots. Targeted scenario is primarilyteela
to underwater exploration, however the search and resg

scenario with swarm-like robots (e.g. aerial surveillgncan

also be envisaged. It is also proposed to build a gene
implementation framework to be effectively executed bath f

simulation and for real robot applications.
Experiment results showed that thé@wy flight algorithm

ki

(12]

can achieve a better performance compared to the fixggh
length random walk. Experiment results also demonstrated
that the algorithm becomes more efficient by applying the
artificial potential field. However, if the number of robots

exceed a limit, the effectiveness of the algorithm has legd]

impact to the whole performance. Several open questions Flr'ﬁ
related to a physical implementation of signature for iadir

communication and their dropping/collecting in underwate

environment.

[16]

Further works are primarily related to implementation on
surface with Jasmine and further transition to the undeswatl17]

platform. After finding and verifying an appropriate alghm

!k’@ S. Kornienko, O.Kornienko, and P.Levi.
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