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Abstract—An efficient search algorithm is very crucial in
robotic area, especially for exploration missions, where the target
availability is unknown and the condition of the environment
is highly unpredictable. In a very large environment, it is not
sufficient to scan an area or volume by a single robot, multiple
robots should be involved to perform the collective exploration. In
this paper, we propose to combine bio-inspired search algorithm
called Lévy flight and artificial potential field method to perform
an efficient searching algorithm for multi-robot applications. The
main focus of this work is to prove the concept and to measure the
efficiency of the algorithm. Several experiments, which compare
different search algorithms, are also performed.
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I. INTRODUCTION

Unmanned area exploration is crucial for investigating bio-
logical species, monitoring pollution, disaster warning system,
and search-rescue mission. Autonomous robot equipped with
sensing peripherals is deployed in the environment to find the
object of interest, i.e., fire spots in the jungle, missing black
box from a crashed airplane, or to measure a concentration of
hazardous materials. However, in a very large environment,it
is not sufficient to scan an area or volume with a single robot.
Many autonomous robots, which have wireless communica-
tion capabilities are deployed to improve searching accuracy.
Therefore, beside having an optimal search strategy, the whole
system becomes wireless mobile sensor network that is able to
perform distributed sensing in a dynamic environment. If the
number of autonomous robots is large, collective phenomena
may also be observed.

There are many bio-inspired examples of how to realize
efficient foraging. Animal optimize its search for food with
physical and biological constraints, which restrict the behavior.
Evolutionary process through natural selection led over time
to highly efficient and optimal foraging strategies, e.g. how
lobster localize and track odor plumes or bacterial chemotaxis
mechanism used by e-coli to response the nutrition concen-

tration gradient [2]. In case that the forager can only detect
the randomly located objects in limited vicinity, random walk
is performed to explore the environment. The best statistical
strategy of optimizing the random search has been addressed
by many researcher. In [2],[3],[4],[5], it is shown that theran-
dom search efficiency depends on the probability distribution
of the flight length taken by the forager. When the target sites
are sparsely and randomly distributed, the optimum strategy is
a specialized random walks movement, called Lévy flight [4].
Lévy flight is a random walk mechanism that has the Lévy
probability distribution function in determining the length of
the walk. By performing Ĺevy flight, forager optimizes the
number of targets encountered versus the traveled distance.
The idea is that the probability of returning to the previous
site is smaller compared to other random walk mechanism
[4]. This Lévy flight motion has been found among various
organisms, such as marine predators, fruit flies, and honey bee
[2][4].

In this paper, we proposed to combine Lévy flight mech-
anism and artificial potential field method. The Lévy flight
algorithm will generate the length of the movement, while the
artificial potential field will improve the dispersion of thede-
ployed robot by generating repulsion forces among robots. The
intention of finding an optimum random searching algorithm
came from ANGELS and SwarmRobot projects [19],[10]. In
one part of ANGELS project scenario, several underwater
mobile robots will be applied for searching an object of interest
in underwater applications. Simulation platform is used for
investigating the feasibility and the efficiency of the random
search implementation. The usage of simulation environment
also simplifies the observation during experiment. In this work,
a simplification of 3D underwater environment from the real
ANGELS scenario into 2D simulative surface is applied for
the first random search experiments. Once the efficient random
search algorithm is developed, then it can be implemented
in the real Jasmine robot platform for surface application by
modifying several parameters, and later can be extended and
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Fig. 1. Swarm robot platform.(a) Micro-robot Jasmine IIIp;(b) ANGELS
Underwater Test Platform.

improved for the real 3D environment with underwater robot.
In order to measure the performance of the algorithm, several
experiments are provided by changing several parameters in
the algorithm. Furthermore, comparing the algorithm with a
usual random search method is also necessary.

The main focus of this paper is not only to measure the
efficiency of the searching algorithm by using simulation, but
also to find an appropriate solution for designing a generic
framework to implement the Ĺevy flight algorithm for robotic
applications. However, the generic framework must be appro-
priate both in simulation and in real robots. Furthermore, since
the architecture of the swarm robot should be simple and
small, an implementation that has only light computational
requirements is crucial.

The rest of this paper is structured in the following way. The
Secs. II and III describe theoretical approaches underlying the
Lévy flight and artificial potential field. Secs. IV and V are
devoted to implementation and experiments, whereas Sec. VI
concludes this work.

II. L ÉVY FLIGHT RANDOM SEARCH

Biological creatures perform different exploration activities:
e.g. to search for sources of food that are not visible in the
immediate vicinity of the animal, to search for a new site,
to search for a mate, or to avoid predators. The knowledge
about the condition of the environment implies the complexity
of the searching strategy. If the environment is unchanging
and highly predictable, animal is able to develop knowledge
of where to forage. If the resource availability is unknown
(according to the perception of animals) and the condition of
the environment is unpredictable, animals have to conduct non-
oriented searches with little or no prior knowledge of where
and how resources are distributed. Regarding the physical
and biological constraint, the capability to find the resources
efficiently will minimize the risk of starvation [5].

Brownian walk and Ĺevy flight are two well known bio-
logical random search. For many years, the Brownian walk
was the most used model for describing non-oriented animal
movement [1]. The main difference between Brownian random
walk and Ĺevy flight is that Ĺevy flight uses Ĺevy probability
distribution that has power tail instead of using normal Gaus-
sian distribution, that makes the probability of returningto
previously visited site is smaller, and therefore advantageous
when target sites are sparsely and randomly distributed [1],

[3]. Other difference came from the intention in deciding the
length of the movements. In the Brownian walk, the scale of
the movement is determined by the organism. However, in the
Lévy flight, the larger scale of the movement is defined by the
distribution of the object of interest, thus makes Lévy flight
more flexible and adaptive to the environmental changes [3].

Fig. 2. Comparison of Levy Probability Distribution for different value of
α

P. Lévy in 1930s discovered a class of probability distri-
bution which has an infinite second moment and governing
the sum of these random variables [1]. The process is called
stable, if the sum of these variables has the same probability
distribution as individual random variables. A typical example
of the stable process is the Gaussian process. While the
Gaussian process has a finite second moment. The stable
probability distribution that has an infinite second moment
is then called the Ĺevy probability distribution and has the
following form [1]:

Pα,γ (l) =
1

π

∫

∞

−∞

e−γqαcos(ql)dq (1)

The distribution is symmetry with respect tol = 0, γ is the
scaling factor andα determines the shape of the distribution.
The required value ofα is between 0 and 2. The parameter
α determines the shape of the distribution in such a way that
different shapes of probability distribution in the tail region can
be obtained. The bigger is the parameterα, the shorter the tail
region. In the limit ofα is 2, the distribution will become the
Gaussian distribution and no longer Lévy distribution. Thus,
by fixing γ = 1, for large values ofl, (1) can be approximated
by [1],[4]:

Pα(l)≈l−α (2)

Viswanathan et al. [4] derived several equations in order to
optimize the Ĺevy flight’s parameters. They describe that the
mean numberN of flights (movements) between successive
target sites is approximated by:

N ≈ (
λ

rv
)

(α−1)
2 , (3)

whereλ is the average distance between two successive target
sites andrv is the sensing range of the forager. They also



describe that the optimal efficient value of alpha can be
approximated by:

α = 2− β, (4)

where
β ≈

1

(ln λ
rv
)2
. (5)

So in the absence of a priori knowledge about the distribution
of target sites, an optimal strategy for a forager is to choose
α = 2 when λ

rv
is large but not exactly known.

III. A RTIFICIAL POTENTIAL FIELD METHOD

Artificial potential field creates a field, or gradient, among
robots and their environment. This method was originally
invented and introduced by Khatib [17] for robot manipulator
path planning and is widely used in many variants in the
robotics. The basic idea of the potential field approaches isthat
the robot is attracted towards the goal, i.e. searching target, or
object of interest, while being repulsed by the obstacles which
are known in the environment. The superposition of all forces
is applied to the robot and smoothly guides the robot toward
the goal while simultaneously avoiding known obstacles. In
this paper, we proposed for implementing only repulsion
forces among robots to improve the dispersion process during
deployment. However, the repulsion forces is not applied for
obstacles.

If we assume a differentiable potential field functionU(q),
we can find the related forceF (q) at positionq = (x, y)

F (q) = −∇U(q), (6)

where∇U(q) denotes the gradient vector ofU at positionq.

∇U =





∂U
∂x

∂U
∂y



 (7)

The idea of the repulsive potential is to generate a force among
robots to repel each other. This repulsive potential shouldbe
very strong when the robot is close each other, but should not
influence their movement when they are far away from each
other. One example of such a repulsive field is [17]:

Urep(q) =

{ 1
2krep(

1
ρ(q) −

1
ρ0
) if ρ(q) ≥ ρ0,

0 if ρ(q) < ρ0,
(8)

wherekrep is a scaling factor,ρ(q) is the minimal distance
from q to the adjacent robot andρ0 the threshold value of the
distance. The repulsive potential functionUrep is positive of
zero and tends to infinity asq gets closer to the other robot.
This leads to the repulsive force:

F rep = −∇Urep(q) = (9)
{

krep(
1

ρ(q) −
1
ρ0
) 1
ρ2(q)

q−qneighbor

ρ(q) if ρ(q) ≥ ρ0,

0 if ρ(q) < ρ0.

Thus, the amount of the repulsive force will accelerate the
robot movement to the opposite direction of the potential field
source.

From the repulsion force equation (9), it is concluded
that the robot is required to discriminate between robots
and obstacles, and to measure distance only to robots. In
Jasmine robot, the recognition system is implemented by IR
identification during active and passive sensing. However,in
the ANGELS test platform, blue light system is applied to
replace the IR sensor, because blue light is less absorbed
underwater compared with IR light.

IV. I MPLEMENTATION FRAMEWORK

A. Generic Framework of the Implementation

One main goal of this work is to implement a generic
implementation framework of the Lévy flight random walk in
the robotic platform. The generic implementation framework
is expected to be able to simplify the modification of the search
algorithm and parameters during the experiment. Performance
investigation can be performed by comparing the result of
the implementation with some usual search methods. The
framework should also simplify the calibration process in
the real robot implementation. Therefore, simple kinematic
equation to model the robot movement is derived:





ẋ(t)
ẏ(t)

θ̇(t)



 = L(t)





vcosθ(t)
vsinθ(t)

0



+ (1− L(t))





0
0

ω(t)



 (10)

(a) (b)

Fig. 3. (a) Waveform for fixed-length random walk.(b)Waveform for Levy-
flight random walk.

Here, x(t) and y(t) are position of the robot at timet
in Cartesian coordinate,θ(t) is the orientation of the robot,
v is the constant linear velocity,L(t) is the control value
to turn on and to turn off the movement of the robot, and
ω(t) is the angular velocity of the robot randomized by the
normal Gaussian distribution function. Within this equation,
the period ofL(t) performs the length of the robot walk
and the valueω(t) determines the orientation movement of
the robot. The value ofL(t) comes from the square wave
oscillator output, where the waveform period is determined
by the type of the random walk. The period ofL(t) and
ω(t) value are parameters to be modified during experiments.
This principle is bio-inspired controller implementationsimilar
to Central Pattern Generator (CPG) that can be found in
some animals locomotion mechanisms and inspired by [2] for
bacterial chemotaxis foraging implementation.

As described before, the square wave oscillator output drives
the activation of the locomotion system of the robot. Since
the possible value of the driver signal is only ’1’ and ’0’, a
simple ’on-off’ controller is required. Fig. 4 shows the Finite



Fig. 4. Finite State Machine Model of the Controller.

State Machine (FSM) model of the designed controller. During
the initial state of the controller, robot performs the collision
avoidance. After the first positive period, the value of theL(t)
becomes ’0’. The robot changes the direction during the ’zero’
phase withinω(t) angular velocity. The length of the positive
phase is defined by the result of the Lévy probability function
generator or the period of the constant frequency oscillator.
The robot will enter the ’Collision Avoidance’ state again as
soon as the value ofL(t) becomes ’1’. If there is another
robot in its sensing range, the controller state will move to
the ’Potential Field Routine’. In this routine, controllerwill
measure the distance to the adjacent robot for calculating
the repulsion force, and then accelerate the movement of the
robot to the opposite direction of the adjacent robot within
the calculated repulsion force. Finally, if the robot foundthe
object of interest during the robot the ’Collision Avoidance’
state , it will enter the ’Catching Target’ and will put the
artificial signature that has repelling field. Here, the landmark
is implemented as a specific message content to the target to
turn on the ’repelling signal’. Therefore, other robots, which
are aware of the ’repelling signal’, will avoid the area around
the found target and will disperse to other foraging area.

B. Lévy Flight Implementation

An algorithm for generating random numbers based on Lévy
probability distribution is needed to determine the lengthof the
walk of the robot during the foraging phase. Such algorithm
was introduced in [1]. This algorithm requires two independent
random variablesa and b which have a normal Gaussian
distribution from this nonlinear transformation

m =
a

|b|
1
α

(11)

within the nonlinear transformation, the sum of variables with
an appropriate normalization

zn =
1

n
1
α

n
∑

k=1

mk (12)

converges to the Ĺevy probability distribution with largern
(the usual value ofn is 100 [1][6]).

Since Gaussian random number is required for the Lévy
flight implementation and for randomizing the direction of
moving, an appropriate Gaussian approximation is investi-
gated. Box-Muller transformation[8] is chosen in the imple-
mentation, since it is a well known numerical approxima-
tion for generating Gaussian distribution random number and
has many available programming implementation. Box-Muller
transformation is popular, because it is simple and fast forhigh
level language implementation [9].

C. Robotic Simulation Platform

Simulation platform is required, because the real robotic
platforms do not have a global localization system and also
have complex kinematic models. Simulation platform can sim-
plify the modification of control parameters and environmental
condition. Additionally, it is also more scalable, thus makes
some experiments with hundreds of robots possible. Webots
from Cyberobotic is chosen as the simulation platform.

For surface application, later the random search algorithm
will be implemented in the Jasmine robot. Therefore, the
robotic platform in the simulation must have similar kinematic
model and sensing capability with the real Jasmine, see Fig.5.
Jasmine uses six IR sensor for active sensing and communica-
tion. In the locomotion part, two differential wheels with two
DC motors are located on the right and on the left side of
the Jasmine robot. Therefore, similar sensor and locomotion
mechanism are also realized in the simulation robot.

(a) (b)

Fig. 5. (a) Radiation Pattern of Sensing for Jasmine [10].(b) Robotic
platform in the simulation.

V. M ULTI -ROBOTIC RANDOM SEARCH EXPERIMENTS

A. Experimental Setup

Big simulation arena that emulates the environment is
necessary to implement swarm robotic experiments with many
robots. Therefore, an arena that has 20×20 simulative ’meters’
of size is prepared. Several obstacles with different size and
shape are placed randomly on the simulation arena, see Fig. 6.
Nevertheless, objects of interests as searching targets are also
prepared. The object of interests is a passive static robot that
transmit a specific message within the same range as robot
sensor.

The main purpose of the experiments is to measure the
minimum time travel that is required by all robots to find all



Fig. 6. Simulation Arena.

of the foraging targets. Several experiments performed in this
paper include comparison for different numbers of robots in
the searching mission, comparison with other random walk
algorithm, and investigation related with the applicationof
the artificial potential field, see Fig. 7. The other random
walk algorithm that is compared with the Lévy flight in our
experiment is fixed-length random walk.

From the generic framework, it is described that several
variable values can be modified during the experiments and
others remained constant. The constant linear velocityk is
configured as 60 cm/sec. The period of oscillator value to
control the transition of the walk and to stop the phase is taken
from the output value of the Ĺevy distribution generator. It
can be also replaced by a constant frequency oscillator for the
fixed-length walk mode. Therefore, the period of the oscillator
determines the length of the robot walk in the recent phase,
and the frequency of changing movement direction.

(a) (b)

Fig. 7. (a) Single robot random search in the simulation.(b) Multi robot
random search in the simulation.

B. Experimental Result

During the experiments, several individual robots are ran-
domly deployed in the arena to search the targets. For each
experiment, different number of robots and targets are per-
formed. Every experiment is executed in 20 trials on different
environmental conditions (e.g. position of the targets and
position of the obstacles).

Since there are tens of identical robots deployed together
in the environment, different swarm-like strategies can be
explored. Intuitively, by using more robots in the searching
process, the searching time will reduce significantly due tothe
increasing number of robot. However, the collision avoidance

mechanism allows the robot to avoid each other and this affects
the pattern of the length of walk. Every time the robots meet
each other, robot will change its direction earlier then ex-
pected, this reduces the required length of walk determinedby
the Lévy distribution function. Therefore, reducing searching
time by increasing the number of robots will be saturated in
some points.

In order to perform collective behavior, robot must have
communication peripheral to propagate information regarding
the individual progress to other robots. Swarm communication
can be performed in many different ways, i.e., by using direct
communication, by using the environment (stigmergy), or by
using bio-inspired pheromone. In this experiment, indirect
communication approach through beacon is applied for infor-
mation sharing among robot. If one robot can find a target,
it will leave a signature on the target, so that the other robot
will aware to this signature and disperse to the rest area of the
environment to find other targets. The awareness of the robot
to recognize the signature is wider than the sensing range of
the robot. Nevertheless, instead of only leaving signatureto the
found target, other useful information might also be shared.
Furthermore, it is nice to have a signature on the found target,
since it simplifies the observation during the experiments.

Fig. 8. Multi robot random-searching experiments, searching time vs number
of targets, number of robots: 10, L+P: Lévy random-walk and Potential Field,
L: Lévy random-walk, FL: Fixed-length random

From the experiment results in Figs. 8 and 9, it can be
seen that the Ĺevy flight is effective for different numbers of
robots. However, if the number of robots exceed some limit,
its effectiveness has essential different with the fixed-length
movement. The large number of robots forces an individual
robot to be more frequent in changing direction to avoid other
robot during foraging. Therefore, if changing a movement
direction to avoid other robots becomes too frequent, method
for determining the length of the walk has less impact on the
searching performance. Nevertheless, comparing to the fixed-
length random search, the Lévy flight is still more effective
for multi-robot application in every experimental condition.
Finally, it can be shown that the implementation of the artificial
potential field among robots also increase the performance of
the searching algorithm.



Fig. 9. Multi robot random-searching experiments, searching time vs number
of robots, number of targets:8, L+P: Lévy random-walk and Potential Field,
L: Lévy random-walk, FL: Fixed-length random

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated an efficient random search
algorithm for multi-robot application that is crucial in explo-
ration of large areas. The proposed idea consists in using the
Lévy flight algorithm for determining the length of the walk
and artificial potential field to improve the efficiency of the
dispersion during deployment. The approach has the advantage
that it does not require centralized control or localization
system, and will therefore scale the possibility to apply very
large number of robots. Targeted scenario is primarily related
to underwater exploration, however the search and rescue
scenario with swarm-like robots (e.g. aerial surveillance) can
also be envisaged. It is also proposed to build a generic
implementation framework to be effectively executed both for
simulation and for real robot applications.

Experiment results showed that the Lévy flight algorithm
can achieve a better performance compared to the fixed-
length random walk. Experiment results also demonstrated
that the algorithm becomes more efficient by applying the
artificial potential field. However, if the number of robots
exceed a limit, the effectiveness of the algorithm has less
impact to the whole performance. Several open questions are
related to a physical implementation of signature for indirect
communication and their dropping/collecting in underwater
environment.

Further works are primarily related to implementation on
surface with Jasmine and further transition to the underwater
platform. After finding and verifying an appropriate algorithm
for a random search, the framework, algorithm and parameters
must be ported to the real robot implementation. The Jasmine
robots are envisaged because of real 2D environment and
a possibility to explore the impact of real constraints on
random-search approach. Later it will be implemented on the
ANGELS test platform for underwater foraging and ecological
applications. Both Jasmine and ANGELS test platform have
identification ability for recognizing other robots and active
sensing capability for measuring distance with other robot,
which is necessary for the implementation of the artificial

potential field.
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