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a b s t r a c t

This paper introduces an approach that allows swarm robots to maintain their individual and collective
energetic homeostasis. The on-board recharging electronics and intelligent docking stations enable the
robots to perform autonomous recharging from low energy states. The procedure of collective decision-
making increases collective efficiency by preventing bottlenecks at docking stations and the energetic
death of low-energy robots. These hardware and behavioral mechanisms are implemented in a swarm of
real microrobots, and several analogies to self-regulating biological strategies are found.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Homeostasis is one of the distinctive properties of living or-
ganisms [1]. The evolutionary sensor–actuator development of liv-
ing organisms and their behavioral and reproduction strategies
depend on certain parameters of their internal regulatory mech-
anisms [2]. The most important of these is energy balance and,
closely connected to this, foraging behavior and strategies [3].

Homeostasis in technical systems differs from biological organ-
isms primarily in the non-autonomy of the energy balance [4].
Technical systems, such as mobile robots, depend on human par-
ticipation in their energy supply. The energy problem is especially
challenging in microrobotic systems [5]; state of the art solutions
for autonomous recharging in robots are exemplified by on-board
electronics, sensors and power stations (see for example [6] or [7]);
alternative approaches are represented by, for example, microbial
fuel cells [8] and energy harvesting [9]. Work has been published
concerningmodels of robot foraging [10], bio-inspired energy har-
vesting strategies [11] and more generally on foraging and scala-
bility; see for example [12].

When autonomous robots have energetic homeostasis, their
behavior does not depend solely on behavioral goals defined by a
designer [13]. Such robots monitor their energy state, save energy
by choosing optimal behavior and autonomously seek recharging
stations. In this, we perceive several analogies with biological
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organisms [14]. To some extent, robots can ‘‘feel’’ hungry, can look
for a food source and can exercise certain degrees of behavioral
freedom to avoid energetic death. In this way, these biological
concepts are re-embodied in robotics [15]. This problem becomes
especially hard when many robots perform cooperative energy
foraging. Depending on the current energy level in the swarm,
these robots can collectively choose different foraging strategies:
to allow the robots with the lowest energy to recharge first,
in case they do not survive; an altruistic strategy in which all
robots recharge for a short time and thus maximize the common
energetic level; or an egoistic strategy of maximum individual
recharging and competition for resources. These are analogous
with the behavioral strategies of animals in regions of distributed
food resources [16].

In this paper, we demonstrate autonomous recharging in a
microrobotic swarm [17] and investigate the swarm’s collective
energy homeostasis. This includes the development of relevant
hardware and software components for individual robots. The
technological constraints of the running and recharging times
imposed by the docking and recharging processes define the
behavioral strategies for all the robots. The docking station is
equipped with a communication system compatible with the
robots’ [18] and allows the robots to sense the availability
of energy. To regulate collective behavior, we implement a
procedure for collective decision-making. Since the microrobots
have limited computation and communication capabilities, their
collective decision-making is based on randomly-coupled map
lattices [19], which do not demand sophisticated computation and
communication resources. Themechanismused either changes the
priority and duration of individual recharging or adjusts individual
duty cycles, allowing the robot swarm to adapt to the energetic
conditions in the environment. This self-regulation mechanism
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Fig. 1. (a) The ‘‘Jasmine’’ microrobot’s recharging contacts. The touch sensor on the front of the robot is also shown. (b) The first docking station, at which each robot can
become a communication point. (c) The second docking station, with integrated communication points.

is highly-scalable with regard to swarm density, and introduces
the so-called ‘‘tech-inspired’’ approach, in contrast to previously
published bio-inspired approaches, for example [11,20].

The paper is organized thus: in Section 2, we describe
the hardware components of the robot and the technological
constraints imposed on its behavior; Section 3 deals with energetic
homeostasis and the software components; Section 4 treats the
suggested collective strategy that allows the robots to cooperate
in foraging; Section 5 demonstrates the implementation and the
experiments performed; and finally, Section 6 offers conclusions
from this work.

2. On-board recharging hardware

The ‘‘Jasmine’’ microrobot, shown in Fig. 1(a), measures
30 × 30 × 20 mm3 in size and has two small DC motors
with an integrated planetary gearbox. The microrobot has two
circuit boards, the motor board and the main board, which
communicate via a 200 kHz I2C interface. The main board holds an
ATmega 168 microcontroller, six (60° opening angle) IR channels
(used for proximity sensing and communication) and one IR
geometry-perception-channel (15° opening angle). The sensing
area covers a 360° rose-like area with maximum and minimum
ranges of 200 mm and 100 mm respectively [17]. The physical
communication range can be decreased through a change of
sub-modulation frequency. The main board also supports remote
control, differential light sensing, energy management, ZigBee
communication and is primarily used for the behavioral control
of the robot and for upper extension boards. The motor board
has an ATmega 88 microcontroller and is used for motor control,
the odometrical system [21], energy control, touch (short-range
reflective IR sensor), and color sensing; it also provides another
four channels for further sensors/actuators.

To make the microrobots capable of autonomous recharging,
four components are required: (a) internal energy sensors, mon-
itoring the energy level of the Li–Po accumulator; (b) recharging
circuitry for the Li–Po process; (c) reliable connection with the
docking station with low electrical resistance; (d) communica-
tion with the docking station. The internal energy sensor is im-
plemented as a resistive voltage divider with a coefficient of 0.55,
connected directly to the Li–Po accumulator. The overall resistance
is 726k (402k + 324k), and the continuous drain current is about
5 µA. The ADC conversion takes about 64 µs, so monitoring of the
energy level can be achieved relatively quickly.

The microrobot uses a single-cell 4.2 V Lithium–Polymer
accumulator with a capacity of 250 mAh. The robot consumes
about 200 mA when moving and sensing, about 20 mA when
sensing only (communicating) and about 10 mA when listening
only. Thus, the running time of the robot is approximately 1.25 h.
In its optimal working mode, the Li–Po accumulator discharges
only 75%–80% of its capacity. The accumulator reaches critical
level when the voltage drops to less than 3 V. At this point,

the internal power regulator is not able to stabilize the voltage
fluctuations and the microcontroller can spontaneously reboot.
The recharging current is 1C (250 mA), and full recharging takes
about 90min Partial recharging is almost equal to discharging (that
is, 15minmotion requires about 15min recharging). To control the
recharging process, we use the linear Li–Ion/Li–Po battery charger
LTC4054-4.2 in a small ThinSOT package.

For autonomous recharging,we developed a simple and reliable
solution for the docking station [22]: two 0.4 mm silver-plated
wires glued to the front of the robot. The connectors are installed
at different heights, see Fig. 1(b) or Fig. 1(c). The docking station
comprises a wall to which are attached two strips of copper,
0.2 mm thick by 5 mm wide. Both copper strips are connected
to the power supply, which can provide 5 V and 3 A current. The
length of the docking station is chosen to allow the simultaneous
recharging of 5–10 robots, see Fig. 1(b).Many suchdocking stations
can be placed together, see Fig. 9. To connect to the docking station,
a robot has tomove to this wall (after receiving the docking signal),
until it receives a positive signal from the touch sensor. Then, the
robot turns slightly on its wheels, producing a small mechanical
strain to maintain reliable mechanical contact. The resistance of
such a contact is less than 0.1 � (measured statistically).

2.1. Communication with the docking station and docking approach

The development of the docking station and the docking
approach has been addressed in several publications, such as
[11,22–24,20]. After testing many solutions, we eventually used
two setups that demonstrated the best reliability for docking. In
the setup shown in Fig. 1(b), every docked robot can became a
communication point to guide other robots to the station. The
initial communication point is represented by a robot that remains
at the left boundary of the docking station and does not move.
When a robot approaches the station, it sends a request signal to
the station and listens for an acknowledgment. If it receives an
acknowledgment, it moves straight to the communication point
and sends the request again. No acknowledgmentmeans a free slot
exists. The direction of the free slot is given by the receiving sensor,
that is, if it is the first sensor, that means a docking slot exists
in front, if the second sensor, the robot needs to rotate 30°, and
so on. When necessary, a robot rotates and moves forwards until
it receives a touch confirmation from the touch sensor. Through
monitoring the voltage on the energy sensor, the robot is made
aware of the start of recharging. After a robot is docked to the
station, it sends the docking acknowledgment to any requesting
robots through its rear transmitter.

The setup in Fig. 1(c) uses integrated communication points
(the main boards from the robot) at each docking slot. The docking
station continuously sends the availability signal and number of
free docking positions. This signal can be received up to 10–15 cm
away from the docking station. A robot receiving the docking
signal for free slots approaches the docking station and sends
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Fig. 2. (a)–(f) A docking run for 5 robots, using the second setup. The images were taken at 10 s intervals.

a recharging request. The docking station decreases the number
of free slots by one, and sends a confirmation message to the
requesting robot. The robot then starts the docking and recharging
process.When recharging is finished, the robot sends a terminating
signal to the docking station and moves away, and the docking
station increments the number of free slots.

One run for the first setup is shown in Fig. 9 and for the second
setup in Fig. 2(a)–(f). Both setups work well and are designed
for different purposes. The first setup allows better scalability for
the docking approach, however it is less efficient, because the
initial communication points (that is, the robots) decrease the
recharging capacity of the docking station. The second setup solves
this problem, allowing a simpler docking approach. It is more
intelligent in terms of knowing the number of free and busy slots
but it is more expensive from the hardware point of view. In the
experiments in Section 5 we did not require feedback from the
intelligent docking station and therefore used the first setup.

3. Energetic homeostasis of individual robots

The energetic homeostasis of a robot is based on the charging-
recharging cycle of the Li–Po accumulator1 and includes five states,
shown in Table 1. The robot can manage its energetic behavior, as
shown in Fig. 3. First, in a critical state, the robots should stop the
collective or individual activity currently being executed. Second,
a robot should compare the priority of the currently executed
activity Pr(Task) and the priority of looking for food Pr(Sh). For
example, if the priority of the current activity is 0.6, but ‘‘hunger’’
is 0.7, the robot will look for a docking station. Finally, a robot can
have a so-called ‘‘collective instinct’’, in which it can recharge only
until it reaches the ‘‘satisfied state’’, which takes less time) and
frees a slot for another robot to recharge.

Generally, the potential cooperativeness of individual energetic
homeostasis can comprise:

– higher priority for collectively executed tasks, for example tasks
in which several robots work cooperatively gain maximum
priority;

1 See datasheet for the LTC4054-4.2 standalone linear Li–Ion/Pi–Po battery
charger from Linear Technology.

Fig. 3. Structural scheme for energetic homeostasis of the ‘‘Jasmine’’ robots.
Source: Taken from [11,19].

– activities in which a swarm ‘‘permits’’ express recharging for
robots at a critical energy state;

– avoiding full recharging when there are other robots in
‘‘hungry’’ states.

4. Collective strategies in energy foraging

When the robots recharge individually, several undesired
effects can appear:
– the docking station can become a ‘‘bottleneck’’ that essentially

decreases collective efficiency;
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Table 1
Individual energetic states of the microrobot.

S State Voltage ADC value Comment

Sd Energetic death V < 3.05 142 The robot should stop and go into stand-by mode. In this state it is not able to
react to external stimuli and needs human assistance to recharge

Sc Critical state V < 3.2 150 The robot should look for the docking station regardless of its current task. It
has about 3–5 min to find it before energetic death occurs

Sh Hungry state V < 3.7 173 The robot can start to look for the docking station when it has no more
important tasks to perform. Ideally, when reaching 3.65 V (ADC value 142), the
robot should start looking for the docking station.

Ss Satisfied state V < 4.0 187 The accumulator is not fully recharged (80%–85%), but is charged sufficiently
to allow the robot to run again and free the slot for other robots.

Sf Full state V = 4.2 196 The voltage increases from 4.1 to 4.2 very slowly, (the accumulator is already
recharged up to 90%–95%). At this voltage, the circuit stops recharging.

a b

Fig. 4. (a) The structure of decision-making based on collective information processing. (b) The structure of individual decision-making using collectively calculated Ec
c and

individual E i
l . ‘‘Job A’’—execute the current collective activity, ‘‘not Job A’’—do not participate in collective activities, ‘‘Job B satisfied’’—recharge until reaching the satisfied

state, ‘‘Job B full’’—recharge until reaching the fully recharged state.

– robots with a high energy level can occupy the docking station
and block low-energy robots, which can then energetically die;

– many robots can ‘‘crowd’’ around the docking station and
essentially block the docking approach, increasing the total
recharging time and worsening the energetic balance of the
whole swarm.

In managing their energetic homeostasis, the robots can make
only two possible individual decisions: to execute a current
collective task (Job A) or to move to recharging (Job B). A
cooperative strategy should enable the correct timing and a correct
combination from the individual decisions of all robots.

There are two ways to synchronize individual decisions. First,
decision-making can be collective, and all robotsmust execute that
decision. Examples of collective decision-making are bargaining
or auctioning, in which the final collective activity is not fixed
and must be negotiated [25]. Second, the decision can be made
individually, however the information used for this decision is
prepared collectively [26]. This decision-making process is usually
applied to ‘‘switching decisions’’, where the final collective activity
represents a sequence of predefined sub-activities. For energy
foraging, the second method is the most suitable; the robots can
exchange information about their individual sensor inputs and
after the inputs are collectively processed, the robots will receive
a signal that will define whether they will do Job A or Job B,
see Fig. 4(a). Obviously, the individual state of a robot influences
its decision, so that ultimately, collective behavior represents a
complex mix between collective ‘‘needs’’ and individual ‘‘desires’’.

We introduce two input values that robots can exchange
in collective processing. These are individual energy level E i

l ,
representing the digitalized voltage of the accumulator, and
individual energy consumption E i

c , calculated as the energy
difference per time unit:

E i
c =

1E i
l

1t
=

E i
l (t1) − E i

l (t2)
t2 − t1

. (1)

As well as these individual values, we introduce Ec
c , which

represents the corresponding collective value. The value of Ec
c is

very useful for estimating the level of collective activity.When Ec
c is

high, all the robots move and the whole swarm is very busy; when
Ec
c is low, the activity level of the swarm is low.
Individual decision-making takes the form shown in Fig. 4(b).

When Ec
c is larger than a given threshold, the swarm is very active.

This means that robots with a low energy should look for the
docking station and recharge. Recharging need last only until the
satisfied state Ss (Job B satisfied) is reached, because full recharging
takes more time and other robots can be in a critical energy state.
Moreover, these robots should not participate in any collective
activities, because they can distort the collective state when they
go to recharge (not Job A). When Ec

c is smaller than a given
threshold (the swarm is passive), robots at critical energy levels
can recharge until the full state Sf (Job B full) is reached. ‘‘Hungry’’
robots should compare the priority of collective tasks with the
priority of going to recharge. This collective strategy manages the
order of the robots’ recharging depending on the collective energy
consumption. In the next section, we consider the question of how
to calculate the value of Ec

c .

4.1. Collective calculation of a swarm’s energy consumption

The application of distributed computation with networked
algorithms [27] in swarms is a challenging problem because
of the limited computational and communication capabilities of
microrobots. To calculate collective energy consumption Ec

c , we
use the theory of coupled map lattices (CML) [28], well known
in nonlinear dynamics. CML allow the derivation of the required
distributed computation with a minimum of communication and
individual computation. Each robot is required to receive some
numerical values from neighboring robots and also transmit its
value to its neighbors. We first assume that a robot receives these
values only from two neighbor robots, that is, the CML structure is
fixed. After that, we extend this approach to a randomly changing
structure, that is, when the robots move.
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The numerical values that the robots are exchanging represent
internal dynamic variables denoted as qin, where n denotes a time
step and i the robot’s number. When a robot communicates with
two neighbors, they create a two-way coupled ring:

qin+1 = aqin + a(qi−1
n + qi+1

n ), i = 1, . . . ,m, (2)
where a is a coefficient, and m is the total number of robots.
Our first task is to determine the coefficient a to obtain the
required computation. The system (2) is first considered in the low-
dimensional case (m = 4), then dimension scaling is performed.
To determine a, we find the solution of these difference equations
using the Jordan normal form approach [29]. Rewriting the system
in the form:
q
n+1

= Aq
n
, (3)

where the matrix A is the two-way coupling matrix [30], we
introduce new state variables ξ

n
determined by q

n
= V ξ

n
; thereby

the system (3) yields V ξ
n+1

= AV ξ
n
. Multiplying from the left

side with the inverse matrix V−1, we get achieve the diagonalized
system:
ξ
n+1

= J ξ
n
, (4)

where the matrices of the eigenvectors V and the inverse V−1 are
given by

V =

1 −1 −1 0
1 1 0 −1
1 −1 1 0
1 1 0 1

 ,

V−1
=

1
4

 1 1 1 1
−1 1 −1 1
−2 0 2 0
0 −2 0 2

 .

(5)

The solution of the system (4) can readily be obtained as
ξ
n

= T ξ
0
, (6)

where the diagonal matrices J and T are given by

J =

3a 0 0 0
0 −a 0 0
0 0 a 0
0 0 0 a

 , T =

(3a)n 0 0 0
0 (−a)n 0 0
0 0 an 0
0 0 0 an

 . (7)

The solution (6) for the initial state variables q
n
has the form:

q
n

= V T V−1q
0

(8)

or setting q = {x, y, z, v}
T , we obtain explicitlyxn

yn
zn
vn

 =
1
4

β+x0 + γ y0 + β−z0 + γ v0
γ x0 + β+y0 + γ z0 + β−v0
β−x0 + γ y0 + β+z0 + γ v0
γ x0 + β−y0 + γ z0 + β+v0

 , (9)

γ =

(3a)n − (−a)n


, β±

=

(3a)n + (−a)n ± 2an


.

To obtain the arithmetical mean value

qin→∞
=

1
N

N
j=1

qj0 (10)

we set a = 1/3. Then, in the long time dynamics, the coefficients γ
andβ± will be equal to γ = β±

= 1 and each of the state variables
of system (2) will be equal to (10).

Dimension scaling. The dimension scaling for the system (2)
is based on the properties of the eigenvalues and eigenvectors
of a two-way coupling matrix A in (3). The eigenvalues of this
symmetric bandm × m matrix (see e.g. [30]) are given by

λi = a + 2a cos

2π i
m


, i = 1, . . . ,m. (11)

Apparently, the eigenvalues (11) take values maximum of that in
absolute magnitude determined byλm = 3a. Setting a = 1/3 and
moreover |λi=1,...,m−1| < 1, we get the long time dynamics for the
matrix T, where T[1,1] = 1 and T[k≠1,l≠1] = 0. This means the result
of V TV−1 in (8) is determined only by the first column of V and the
first row of V−1.

Considering the linear problem of eigenvectors for A, we
ascertain that all components of the first column in V (eigenvector
corresponding to the maximum eigenvalue λm) will always be
equal to 1 independent of the dimension of (2). However, the
difficulty is that we are not always able to analytically determine
the inverse matrix of eigenvectors. To get round this problem for
the case ofm ≤ 100, we calculate thismatrix numerically and thus
ascertain 1/m for all elements of the first row.

Effect of randomly changing neighbors. In Eq. (2), we assumed
that the robots are connected in two-way rings with fixed
neighbors. However, in the real world, the robots are moving
and so the neighbors in the two-way ring are continuously
changing. Generally, this kind of system is denoted as CML with
random coupling, and investigated from the viewpoint of oscillator
synchronization [31], global stability [32], bifurcations [33], and
other properties. We are interested in the observation that CML
can be thought of as a 2-dimensional grid, where each node is a
fixed robot (agent, equation) and couplings indicate connections
between these fixed nodes. When we follow this idea, the moving
robots represent changing couplings. However, when we consider
the nodes in this CML-grid as ‘‘place-holders’’ for a robot, the
coupling means connections between ‘‘place-holders’’ and not
between robots.We only require that for each ‘‘place-holder’’ there
is a robot, when information update in CML is asynchronous (that
is, a robot can connect to and disconnect from a ‘‘place-holder’’ at
any time).

Thus, we can understand the structure of Eq. (2). The changing
of robots with ‘‘place-holders’’ does not influence the eigenvalues
and eigenvectors, but obviouslywill introduce additional nonlinear
effects in the dynamics of CML. There are two main effects that
influence these dynamics. First, as seen in swarm robotics, robots
often build so-called ‘‘clusters’’, which are sometimes separated
from the rest of a swarm [15]. Obviously, this clustering effect can
be observed in CML, where we can see a separate sub-CMLwith its
own qlocaln→∞

. When the robots are moving for a long enough time
(primarily defined by swarm density), they will achieve qglobaln→∞ as
defined by (10). Second, the solution (10) with eigenvalues (11)
represents a stable fix point.When Lj clustered, the robots achieved
by p-asynchronous updates the stable fix point qlocal,jp→∞; they will
retain this value so long as they do not enter into a new cluster

qlocal,jp→∞
=

1
Lj

Lj
i=1

qi0,j, (12)

where j is the number of such subclusters, j = 0 . . . K and K is the
total number of subclusters. The values of qlocal,jp→∞ represent a local
averaging of q0,j and generally have a random character, because
subclusters are created more or less randomly. Thus, we observe
two-step-dynamics with building local fix points qlocal,jp→∞ and their
averaging into qglobalr→∞

qglobalr→∞
=

1
K

K
j=1

qlocal,jp , (13)

where r + p = n (n from the expression (10)). The value of qglobalr→∞

does not depend on the initial value q0 and represents an averaging
of random qlocal,jp→∞.
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a b

Fig. 5. (a) Slow information update, where the message triggering averaging is sent only once, on collision with another robot. (b) Fast information update, where the
messages are sent continuously.

The relationship between p and r in the expressions (12) and
(13) defines a dynamics of CML (2) when neighbors are randomly
changed. In the case p > r , the dynamics are defined by the robots’
behavior in clusters, whereas for p < r and especially for p ≪ r ,
the final result is (almost) independent of the clustering effect.
While both cases have their applications in swarm robotics, in this
paperwe aremore interested in the casewhen p < r or p ≪ r . This
condition can be achievedwhen asynchronous information update
in CML is slow, so that subclusters cannot be built and the qglobalr→∞ is
defined mostly by q0.

To exemplify these calculations, and before carrying out the
real experiments, we simulated this behavior. The simulation
of the robots and especially the robot–robot communication is
implemented in ‘‘Breve’’ [34] andhas a physical character,meaning
the simulated behavior matches relatively well with the behavior
of the real ‘‘Jasmine’’ robots [35]. For different swarm densities,
which also influence the clustering effect, we simulated two cases
of 50 and 100 agents in an arena of the same size. For 50 agents we
expected stronger clustering effects than for 100 agents, primarily
due to lower swarm density.

For both cases we implemented both fast and slow updates of
information, so that we had four different situations for analysis.
The algorithms for fast and slow information updates are shown
in Fig. 5. The main difference between the algorithms is the
number of communication messages sent. In slow update, the
messages are sent only on the first collision contact. Averaging
takes place only when two different messages are received. In fast
information update, communication takes place continuously, not
only at collision contacts but also at averaging. Moreover, a robot
sends messages even when there are no collisions. We expect 3–5
times quicker information propagation in the fast than in the slow
case. In the simulation, we collected the q values of all robots,
plotted in Fig. 6 depending on the number of information updates
performed. Since updates are asynchronous (in the same time step
one robot might perform five updates, whereas another might
perform 50 updates), these plots show relative time dynamics. We
stop the simulation only when all the robots achieve a common
value, so that eventually all the robots achieve the fix point.

In Fig. 6(a) and (b) we see the expected clustering effect. The
robots build many small clusters, where they archive the stable
fix points qlocal,jp→∞. The global averaging is first, relatively slow, and
second, the inaccuracy of averaging is about 33%. In Fig. 6(c) and
(d) we demonstrate the slow updates case. Here, there are fewer
clustering effects and the accuracy of averaging is higher; the
maximum mistake is about 10%. Note that the slow and fast cases

differ in the number of information updates; slowupdate requiring
about 3–5 times less communication. However, the running time
(how many times the agents are running) is almost the same for
both the 50 and 100 robot-cases, because the number of collision
contacts primarily depends on the swarm density, the velocity of
motion and other parameters of the robots.

5. Implementation and experiments

As the communication and random motion of robots in
simulation and in the real swarm are implemented in different
ways, we must first validate the results from the simulation. After
each collision, simulated robots rotate through a random angle
and move on. To generate randomness in the simulation, we use
the discrete uniform distribution bounded on the region [1, 6]
with constant probability at each value. Such distribution is
also called discrete rectangular distribution [36]. Real robots use
environmental conditions for generating randomness, see Fig. 7
and the robots can detect collisions by sensing reflected IR light.
The sensing and collision avoidance radii are nonlinear functions
of the surfaces, motion velocity and orientation of the robots,
and vary between 8 and 15 cm. After each collision, each robot
measures the reflected IR light on all six channels. The IR signal
can come not only from obstacles but also from other robots,
which also avoid collisions. Reflected and directed IR light can
be distinguished from each other, which supports recognition of
robots and passive objects.

The total level of IR signals on all six channels finally defines
the areaswith high and a low densities of robots and obstacles. The
robot selects a direction ofmotionwith the smallest IR signal. Thus,
this environment-dependent random behavior has properties of
spatial uniform distribution, that is, the robots tend to be equally
distributed over the arena. We expect fewer clustering effects for
this behavior than in the simulation.

When simulated robots meet each other, they exchange their
values in a very short time. This results in a rapid convergence of
Eq. (2). To validate this approach, we tested communication
between real robots, using the setup shown in Fig. 7(b). We
measured the time needed to establish bi-directional optical
communication and to transmit a message from the first to the
last robot [37]. The experimental data are shown in Fig. 7(c)
and (d) for different distances between robots and different
communication protocols. Local communication is stable within
the communication range, and thepropagation time increaseswith
the number of bits per message and is almost independent of the
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Fig. 6. Dynamics of variable q for all robots in the simulation; the expected mean value is 150. (a) 50 robots in the fast information update case; (b) 100 robots in the fast
information update case; (c) 50 robots in the slow information update case; (d) 100 robots in the slow information update case.

a b

c d

Fig. 7. (a) Collision avoidance and generation of environment-dependent random motion. Two robots R1, R2 perform active collision avoidance, with the robots between
them representing passive objects; (b) Setup for testing optical communication between robots; (c) Dependence between the number of bits permessage and the propagation
time for ‘‘with confirmation’’ and ‘‘without confirmation’’ protocols (for 6 robots); (d) Dependence between the propagation time and the distance between robots (for 6
robots, 8 bit package).

distance between robots. When the wall dividing the robots is
removed, local communication is distorted by the IR noise from the
other robots, which increases the propagation time. This distortion
can even halt communication, when the robots move. To increase

stability to IR noise, robots meeting each other stop moving
and repeatedly send packages until they exchange two bytes of
information. We expect this will slightly slow the convergence of
Eq. (2).
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d e

Fig. 8. (a)–(c) One run of 20 robots, images taken at 1 min intervals. (d) Plot of numerical q values from real robots. The averaged values obtained in nine experiments
are 169, 171, 173, 169, 167, 170, 163, 168, 167; the average value over all experiments is 168.55, with standard deviation 2.67. (e) Number of information updates in nine
experiments before all robots achieve a stable fix point.

We reproduced the simulation in Fig. 5 with 20 real robots in
an arena measuring 140 × 115 cm, see Fig. 8(a)–(c). The robots
use the random behavior and communication strategy previously
described. All the initial values of qi are mapped to the region [140,
200] of the energetic states from Table 1. We manually set up all
the initial values of q into the robots’ EEPROM, with intervals of 3;
that is, the first robot receives q(1)

0 = 140, the second robot – q(2)
0

= 143, . . . the last robot – q200 = 200. Thus, we expect a value of
170 for long-term dynamics. Internally, q is declared as a float-
type variable, however for communication it was coarsened to
8-bit, that is, the robots communicate integers between 0 and
255. To achieve better averaging, each robot accepts only every
thirtieth communication update for the averaging procedure. Each
experiment lasts around 10 min and is repeated 9 times. At each
communication, the robots store the value of qi in their RAM array.
Since all data are asynchronous, each robot writes a marker (the
value of 255) in its RAM array before a new run of the experiment.
This enables us to synchronize data for plotting. At the end of
all the runs we read these values and plot them in Fig. 8(d).
The average mean value over all experiments is 168.55 and the
maximum error is 4.1%. We expect that by increasing the number
of robots, the error level will also increase, but qualitatively
it should remain around 10% of the slow update strategy. In
Fig. 8(e) we plot the number of information updates before all
robots achieved the stable fix point, thus, the maximum difference
between the fastest and slowest robots is 11 information updates.
Since achieving the fix point is a global event for all robots, this
underlies the following synchronization procedure. Experiments
1–4 are triggered manually, however, in experiments 5–9, after
achieving the fix point the robots start counting 15 stable values,
which are not written in the RAM array. The first robot to achieve
the fifteenth value sends 255; every other robot, on receiving 255,
sends it twice, resets the value of q from EEPROM and starts a new
run. Thus, we observe experiments 5–9 were slightly longer, with
highly-visible fix points.

Concluding these validation experiments, we observe a number
of qualitative and quantitative differences between simulated and

real robots, related to behavior, communication and computation
capabilities. Qualitatively, the long-term dynamics of Eq. (2) in real
robots is similar to simulated robots, but with two differences.
First, we observed fewer clustering effects in real robots than in
simulated, resulting in a lower deviation from the expected mean
value. Second, the running time of real experiments is longer than
simulated experiments, despite the simulator maintaining the
same relationship between the speed of robots and the size of the
arena. The number of information updates in Figs. 6 and 8 does not
reflect their duration: the simulation finished after 3–5 min, with
50–100 robots, whereas the real experiments required 10–15 min
for 20 robots. We see a need to calibrate the simulator with real-
time processes for any energetic experiments.

The final experiments with collective energy foraging were
repeated many times with different setups both during the
original submission and the revision phase of this work. For these
experiments, we used the setup shown in Fig. 9(a), with an arena
measuring 140 × 115 cm containing 50 robots (46 moving robots
and 4 initial communication points). Communication between the
robots was carried out as described for the previous experiments.
Since the swarm density was relatively high, we decreased both
the collision avoidance radius of robots to 3–5 cm and the
motion velocity of the robots, to avoid physical collisions at a
smaller collision radius. The docking station ran at 5.5 V and
used the first approach (from Section 2.1), in which each robot
can become a communication point. We expect that 8–12 robots
can simultaneously recharge in this setup. To obtain values for
total power consumption, a digital multimeter measured the total
current between the docking station and the power supply and
sent the data to a computer (one value every 5 s). Each robot has
an implemented individual energy homeostasis, shown in Figs. 3,
and 4(b).

In the first experiment, see Fig. 10(a), all the robots were first
fully charged manually and allowed to move for 50 min in the
arena. Thus, all the robots were approximately 60% discharged.
The robots subsequently used the egoistic greed approach to
recharging: those robots which were close to the docking station
docked into the free slots (the docking approach for 11 robots took
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Fig. 9. Collective energy foraging in a swarm of ‘‘Jasmine’’ microrobots. (a) Initial set-up: the marked robots are initial communication points; (b) Final state of the
experiment—the circle at the right shows a cluster of robots blocking part of the docking station; (c)–(e) Several images from a particular run of the experiment with
collective decision-making.

a b

Fig. 10. Total current consumption for the greed recharging strategy without collective decision-making for (a) 60% initial discharging; (b) 30% initial discharging.

about 4–5 min) and then recharged until reaching the ‘‘full’’ state.
All the robots from the first docking left the station between 55
and 62 min into the experiment and new robots then docked. We
repeated this experiment using fully-charged robots allowed to
move for 25 min (30% discharged) which then recharged using
the same egoistic greed strategy (see Fig. 10(b)). In this run,
we observed lower current consumption (initial 1 A vs initial
0.7 A) and shorter recharging time (62 min vs 35 min). When
we run these experiments further, we observe a repetition of the
qualitative pattern seen in Fig. 10(a), with large initial currents and
long recharging times (maximum values are around 2 A for the
initial current and about 90 min duration). In the six experiments
performed (three times with 50 min of motion and 3 times with
25min ofmotion), the average current for the greed strategy varies
between 0.38 A and 0.47 A, see Table 2.

In conclusion, for the greed strategy, we observe a relative low
efficiency, explained by low recharging current in the ‘‘satisfied’’
state (when the accumulator is recharged more than 80%–85%). To
improve efficiency, first, the most discharged robots should arrive
the docking station first (they consume a maximum current) and
theduration of recharging should be limiteddepending on the level
of collective energy Ec .

Collective decision-making addresses these two issues and is
implemented thus: all robots, except for currently recharging ones,

communicate and calculate the value of Ec using the expression
(1). Each robot receiving the q value fixes its own q0 = Ec and
calculates q using Eq. (2), using the slow update algorithm.
For synchronization, we used an approach based on counting
information updates after achieving a stable fix point. After 30
such updates, the robots decidewhether to recharge or to continue
with their task. This decision is based on the scheme shown in
Fig. 4(b). Between two decision-making procedures, the robots
exchange the value ‘‘255’’, which resets all the internal states
of the robots. The first robot to send the value of q initiates
a new decision-making procedure. These values are selected so
that robots asynchronously start collective decision-making every
10–15 min (alternatively, a timer can reset internal states).

Individual energy consumption depends on the relationship
between the time spent on the robot’s different activities. To
emulate different activities, and so different energy consumptions,
each robot moves randomly but, during collision avoidance, waits
for a time twait. Thus, the general level of energy consumption
depends on twait , introducing duty cycles in useful activities. In
this way, we can experimentally test swarm foraging behavior for
different energy states in robots.

In the first experiment implementing collective decision-
making, all the robots are first manually recharged and half of
them allowed to move for 30 min, creating a swarmwith different
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a b

Fig. 11. Total current consumption for the recharging strategy with collective decision making for (a) the case of a high initial level of collective energy Ec
c ;

(b) the case of a low initial level of collective energy Ec
c .

Table 2
Parameters of the experiments: Nrobots—the number of robots recharged at the docking station; texperiment—duration of the experiment after the docking station is first fully
occupied; tfirstSet—duration of recharging for the first set of robots (first docked robots); Nrobots

texperiment
—averagenumber of recharged robots during thewhole experiment; Nchanges

texperiment
—

number of current changes at the docking station;


(IS )

NI-samples
—average current, calculated as the sum of current samples (obtained from a digital multimeter) over the number

of these samples. Each experiment was repeated three times, the respective values are separated by commas.

Experiment Nrobots texperiment (min) tfirstSet (min)
Nrobots

texperiment

Nchanges
texperiment


(IS )

NI-samples
(A)

1. Fig. 10(a) 11, 10, 12 62, 60, 65 62, 60, 65 0.17, 0.16, 0.18 0.01, 0.01, 0.01 0.45, 0.40, 0.48
2. Fig. 10(b) 11, 8, 11 35, 31, 37 35, 31, 37 0.31, 0.25, 0.29 0.03, 0.03, 0.03 0.41, 0.37, 0.42
3. Fig. 11(a) 33, 35, 29 100, 100, 100 14, 12, 17 0.33, 0.35, 0.29 0.07, 0.07, 0.06 0.71, 0.75, 0.68
4. Fig. 11(b) 45, 47, 42 100, 100, 100 10, 12, 9 0.45, 0.47, 0.42 0.15, 0.17, 0.14 0.85, 0.90, 0.81

energy levels and a high Ec
c . When the common energy level is

high, the low-energy robots can be the first to recharge and can
recharge for longer. In Fig. 11(a) we see this behavior. After the
first robots to recharge leave the docking station, new robots can
begin recharging. This experiment lasted 100min andwe observed
a slight increase in total energy consumption.

In the second experiment, after manual recharging, all the
robots were allowed to move for 30 min and the common energy
level Ec

c was low. The robots recharged for a short time, to take
a maximum amount of energy, see Fig. 11(b). Changes of robots
in the docking station were more frequent and we observed more
distortions in the recharging process. Since the initial energy levels
were low, the robots that recharged later became more and more
discharged. When they docked, we observed an increasing total
current over time.Moreover, all the later-recharging robots needed
more time to recharge, to least to the satisfactory level, in contrast
to the first robots,which rechargedmore quickly.Weobserved that
several robots become energetically dead.

These experiments were repeated three times; Table 2 shows
several parameters for these experiments. The twomost significant
parameters represent the duration of recharging for the first set of
robots (first docked robots) tfirstSet and the average current


(S)

Nsamples
flowing through the docking station throughout the experiment.
The value of tfirstSet indicates the selected recharging strategy:
long times mean more egoistic behavior, short times mean
more social behavior. We see that collective decision-making
primarily balances collective and individual needs by shortening
the recharging time. The value of the average current


(IS )

NI-samples
shows the energy income of the robot swarm. As we see, collective
decision-making allows an almost doubling of the energy income,
see Fig. 12(a).

Analyzing the results of these experiments, we see that the lim-
ited energy income in the swarm is not enough for the long-term
powering of all robots. For instance, the last experiment demon-
strated the best value of Iincome = 0.9 A, whereas we estimate for
twait = 0 about Iconsumption = 4.6 A for 46 robots. Thus, we ex-
pect energetically dead robots to appear until both values become

balanced, that is, Iincome = Iconsumption. To avoid energetic death, the
robots shouldmonitor the value Ec

c and, on the continuous decreas-
ing of collective energy, should increase the duty cycles by chang-
ing twait , that is, the robots should move less to save energy. This
scheme can represent a global self-regulation mechanism. We im-
plemented the simplest version of this approach with twait1 = 0
and twait2 = 10 s and switching between both values at the fixed
threshold Ec

c = 150 (that is, the critical state). This experiment
lasted three hours (with 30 min of movement of the robots be-
fore the start of the experiment). The total current consumption is
shown in Fig. 12(b), wherewe can see at least two switching points
of twait . During these 270minwe saw no energetically dead robots.

One run of this experiment, performed during the revision of
this paper, lasted for around 26 h (from 18:00 on day one until
around 20:00 the next day). We expected to test the possibility of
long-term autonomy, to discover hardware implications for long-
term behavior and to explore the number of dead robots as the
experiment progressed. First, we encountered a relatively high
number of energetically dead robots. With an average capacity of
the docking station of 10 robots, we expected that all 46 robots
could have enough energetic resources to survive for a long time
with 75% of duty cycles. However, between 4 and 12 h after
the experiment began, more than half of the robots had become
completely discharged. At the end of the experiment, only 9 robots
survived. Of the dead robots, we noted that the open-geared
motor-wheel coupling of 5 robots was blocked by dust collected
during movement; 3 robots had broken docking contacts; 1 robot
had a defective fuse on its Li–Po accumulator and 1 robot had a
deeply discharged accumulator. Unfortunately, three of the broken
robots were close to the docking station, creating a cluster of
energetically dead robots (as in Fig. 9(b)),which eventually blocked
the left half of the docking station and decreased the recharging
capability of the station.

6. Conclusions

In this paper, we have suggested approaches for maintaining
energetic homeostasis in a robot swarm. This approach includes
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Fig. 12. (a) Average current for the greed strategy and for the decision-making approach;(b) Total current consumption for the recharging strategy with collective decision-
making and with global self-regulation by changing twait .

hardware and softwaremechanisms at the individual robotic level,
as well as at the collective level of the whole swarm. We have
demonstrated that collective values, such as the collective energy
level, can be useful in adapting individual behavior to collective
needs and for increasing energetic efficiency. In particular, the
value of collective energy can be used either for deciding on
priority and duration of individual recharging, or for global
self-regulation by adjusting individual duty cycles. The goal of
collective regulation is to support the efficient use of limited
recharging stations, to adapt robot swarms to the energetic
conditions in their environment [38], and to avoid energetic death
of robots with critically low energy.

Another issue is the optimal foraging strategy at the individual
as well as the collective levels. In this paper, we did not investigate
the possibilities of optimizing collective values and foraging
behavior thus created, especially for specialized tasks (where the
priorities of ‘‘looking for food’’ and ‘‘doing a job’’ can be changed).
In [11], we offered several ideas for such optimization by mixing
behavioral strategies, but this area represents a place for further
research.

Regarding long-term self-regulation, which was very briefly
shown in the final experiment, we faced several problems
unrelated to the robots’ behavior and which need to be taken into
account in the design of long-term experiments for more complex
reconfigurable systems [39]. First, for long-term autonomy, a
robust mechatronic design must be created [40]. Issues such as
wheels blocked by dust are negligible in a single experiment with
human assistance, but become critical in longer-term experiments
without humanmaintenance. Second, the area around the docking
station is a bottleneck in the system.When this area is blocked (for
example by waiting or dead robots), the docking station cannot
be used to full capacity. The best strategy is to install docking
stations on all the walls of the arena. Thus, we indirectly confirm
the statement in [20]: for optimal foraging, energetic resources
should be uniformly distributed around the arena.

During the development of these experiments, we encountered
a few issues that can extend the boundary of robotic research. First
is the ‘‘free will’’ required to survive due to individual energetic
homeostasis. Robots can stop the task they are undertaking,
because they are ‘‘hungry’’, and start looking for a ‘‘food place’’. This
radically differs from the ‘‘industrial approach’’ [41,42], in which
the robot’s freedoms are limited. ‘‘Free will’’ can be influenced
by the respective priorities of ‘‘hungry’’ states and collective
tasks. However, ‘‘free will’’ can also cause undesired effects at the
collective level and should be investigated in more detail.

Generally, we have also shown that the implementation of au-
tonomous homeostasis in microrobots leads to very interesting
behaviors with many analogies to biological swarm systems. The
robots collectively adapt to the energetic situation. For instance,

they build a ‘‘buffer’’ before the docking station, in which the num-
ber of robots in the ‘‘buffer’’ depends on the relationship between
the collective energy consumption and capabilities of the docking
station. This is an emergent phenomenon [43], not programmed
into the robots’ behavior and to some extent, demonstrates an
emergent self-regulating mechanism [44]. In critical situations,
robots in the ‘‘buffer’’ compete for a free slot in the docking station.
These analogies offer not only the opportunity for better design of
robotic systems, but also a deeper understanding of biological or-
ganisms and the phenomenon of collective intelligence.
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