From real robot swarm to evolutionary multi-robot organism

S. Kornienko, O. Kornienko, A. Nagarathinam, P. Levi

Abstract— Collective working allows microrobots to achieve
more functionality, better performance and higher reliability
on the macroscopic level. In this paper we demonstrate the
on-going work in developing novel collective systems, where
swarm robots work not only collectively, but are also capable of
autonomous aggregation and disaggregation into a higher multi-
robot organism. The main issues of such an organism, as well as
its genome-based control, are discussed. We show the developed
docking approach and investigate topological transformations
in a prototype of self-assembling robots.

I. INTRODUCTION

A natural example of collectively working insects and
animals are very impressive from two viewpoints [1]. Firstly,
despite limitation in energy, communication and perception
of swarm agents, the whole swarm is able to emerge quite
diverse and attain functionally-rich collective behavior. These
examples cover collective activities from food foraging and
labor division till nest building and collective defence [2].
Secondly, natural swarm agents develop efficient coordina-
tion techniques, allowing cooperative and competitive work-
ing in large and super-large societies [3]. Lately, technologi-
cal and primarily robotic community, investigates and mimics
these collective techniques in artificial collective systems by
trying to improve functionality, reliability and intelligence of
robotic and microrobotic systems [4].

When swarm robots work collectively, they improve their
collective fitness, i.e. robots profit from collective working.
This is related to e.g. collective perception and actuation,
where the objects are essentially larger and heavier than
each robot; such as collective energy foraging, where robots
find food much quicker than doing it alone [5]; collective
exploration, cleaning and many other activities, where each
robot is too weak, or has too limited resources. Performing
real experiments in a large swarm (100+) of microrobots
Jasmine [6], we encounter a limit of collective fitness that can
be achieved in a swarm. For example, when a food source is
separated from a swarm by a wall, robots can never achieve
this source whatever collective technique they emerge. All
robots will energetically die.

Considering natural examples of collective work, we can
encounter systems, which can achieve principally new col-
lective work. For example, some fungi can aggregate into a
multi-cellular symbiotic organism and perform in this way
such activities that cannot be fulfilled alone or in a swarm-
like way [7]. The idea is to apply this approach to swarm (or
more generally to collective) robotic systems and to improve

Authors are with the Institute of Parallel and Distributed Systems,
University of Stuttgart, Universitétsstr. 38, D-70569 Stuttgart, phone: +49-
711-7816373; fax: +49-711-7816250; email:Sergey.Kornienko@ipvs.uni-
stuttgart.de

1-4244-1340-0/07$25.00 (©2007 IEEE

their collective performance by making robots capable for au-
tonomous self-assembling (aggregation and disaggregation)
in/from a multi-robot organism. Such an organism can be
evolved from the simplest forms into more complex ones,
exploring its own environment and even assimilating new
environments. The swarm-based approaches, underlying self-
assembling processes, differ this new trend in collective
systems from known robotic research as e.g. mechanical self-
assembling [8] or reconfigurable robotics [9].

In this paper we investigate a few issues of a transition
between robot swarm and a single multi-robotic organism.
We show the main restrictions imposed on robots capable for
collective activities in swarm-like and organism-like ways.
Based on the existing microrobotic platform, we developed
an IR-based docking approach, providing appropriate accu-
racy of docking. Finally, we demonstrate the first prototype
of robots and investigate topological issues of assembling
into an organism.

The rest of the paper is organized in the following way. In
Sec. II we describe limitations imposed on robots. Sec. III
demonstrates a current development of robots and Sec. IV -
first topological experiments with these robots. The Sec. V
is devoted to a brief overview of the intended genome-based
control of organism. Finally, in Sec. VI we conclude this
work.

II. NEW PARADIGM IN COLLECTIVE ROBOTIC SYSTEMS

Collective intelligence is often associated with macro-
scopic capabilities of coordination among robots, collective
decision making, labor division and tasks allocation in the
group [10]. The main idea behind this is that robots are
achieving better performance when working collectively.

The background of collective intelligence is related to
the capability of swarm agents to interact jointly in one
medium. Currently, there are only two different cases of such
interactions. In the first case agents communicate through
a digital channel, capable for semantic messages exchange.
Due to information exchange, agents build different types of
common knowledge [11]. This common knowledge in fact
underlie collective intelligence.

The second case appears when macroscopic capabilities
are defined by environmental feedback. The system builds
a closed macroscopic feedback-loop, which works in a
collective way as a distributed control mechanisms. In this
case there is no need of complex communication, agents can
interact even only kinetically.

However in nature we encounter the third case of in-
teractions. For example, some bacteria and fungi (e.g. dic-
tyostelium discoideum) can aggregate into a multi-cellular
organism when this provides better surviving chances [7].

1483

In this way, they interact not only through information
exchange, they build the closest physical, chemical and
mechanical interconnections. Therefore a natural step in the
collective robotic systems is to investigate an aggregation
from single robots into a single multi-robot organism, i.e.
from robot swarm into a multi-robot organism.

Despite the similarities of both scenarios (robot swarm
and multi-robot organism), such as a large number of robots,
focus on collective/emergent behavior, a transition between
them is a quite difficult step due to mechanical, electrical
and, primarily, conceptional issues. They are related to
hardware, software, behavior and organism-specific issues. In
this section we consider them in relation to swarm robotics.
In the table I we demonstrate a short overview of essential
differences between single swarm robots and a multi-robot
organism.

TABLE 1

Main differences between robot swarm and multi-robot organism.

[Robot swarm | Multi-robot organism

Energy management individual shared

Communication IR local, low speed wired, high speed
Sensors and the same sensors and | specialization in using
actuation actuators in all robots sensors and actuators

Internal Control individual BIOS need of middle-ware

Collective Control self-organization strong coordination

Coordination through local rules now unknown
Behavior generalization strong specialization

Functionality emerged evolved
Adaptation changing local rules artificial evolution

Hardware: Energy and communication. Two primary
hardware differences between robot swarm and organism are
energy supply (especially energy distribution) and commu-
nication between robots. In robot swarm each robot looks
for available energy resources and consumes them. In Fig. 1
we demonstrate a typical scenario with autonomous energy
foraging in a swarm. Basically, all robots compete for energy

Fig. 1.
Jasmine. Docking station consists of two copper strips with 5V
installed on the back-wall. Each robot has the Li-Po recharging
chip. Robots when approaching docking station are competing.

Collective energy foraging in a swarm of 50 micro-robots

1484

resources.

A multi-robot organism, see Fig. 2, possesses a common
energy bus, where robots share their individual energy.
Here robots cannot compete anymore for energy resources,

Fig. 2. Topological model of a 3D multi-robot organism. The
organism possesses a common energy bus, where all robots share
their energy resources.

other case the whole organism will not work. We can even
imagine that some robots can sacrifice themselves so that
the organism survives. Such energetically dead robots can
serve either as a rigid construction element or they should
be dissociated from the organism. We see that electrical
construction and behavioral strategies for both scenarios are
completely different.

The main communication in a robot swarm is performed
locally through IR scheme (communication distance is about
15-20 cm.). Global message exchange is possible (with
wireless ZigBee protocol), but is used exceptionally, because
it does not provide information context [12]. The amount
of communicating messages is quite tiny due to essential
difficulties in message routing [12].

Considering communication between robots in the organ-
ism, we cannot use anymore IR or RF protocols due to
interferences and relatively low transfer rate. Robots should
be combined into a kind of internal communication bus
(CANbus) with a high transfer rate. We should also foresee
a situation ’communication through dead robots’.

Hardware: Sensors and actuation. Each robot in a
swarm possesses individual sensors and locomotion. The ap-
proaches, used in many microrobotic solutions e.g. [13] [14],
utilize IR-based proximity and distance sensing as well as
non-holonomic differential wheeled drive with DC motors.

In the organism, all robots specialize in using only a
few sensors and actuators for specific tasks. So, instead of
proximity sensing, robots can use their IR sensors for making
an ’organism skin’. The sensors will functionally be used in
a completely different way and some of them will remain
redundant. Individual robot locomotion is not necessary and
is also redundant in the organism. However the robots should
possess a kind of actuators, which allow working in the
organism. Due to this actuation, the organisms is able to
raise its own legs or generally to move. These actuators are

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

not used in the robot swarm.

Software: Control of individual behavior. When hard-
ware issues are quite hard, but their solution seems to be
feasible, the software issues are completely open even in
the conceptual part. We start with controlling individual
behavior. In the Jasmine swarm each robot has its own BIOS
(Basic Input Output System) providing interface to hardware,
managing memory, interruption, communication and user
defined activities. This BIOS is running on two/three 8MHz
microcontrollers. Reaction time of the robot is about 50-100
ms in the case of Jasmine robots (without communication is
about 10 ms).

In the case of an organism we encounter completely
different situation. Firstly, when an individual robot has only
two (or four) microcontrollers, the organism possesses about
200-400 microcontrollers. In this way it represents a large
distributed system. We will encounter internal coordination
and synchronization problems typical for distributed systems.
Secondly, the organism should be controlled by a ’brain’,
where a position and functionality of this ’organism brain’
is now unclear. It can be expected that such a brain is built
in a distributed way, where each robot gives a part of its own
computational resources for collective controlling purposes.
In this case each robot should support a middle-ware, capable
for a high-parallelization.

Software: Control of collective behavior. The control
of collective behavior is the hardest part. The collective
behavior of the robot swarm is controlled by local rules im-
plemented in each robot. When robots are interrupting, they
undergo self-organization processes, which in turn emerge a
macroscopic phenomena, known as collective behavior. We
often say, that collective systems produce social rules on a
mezoscopic level, which finally govern collective behavior.
As followed by well-know Poincaré effect [15], we are not
able to predict collective behavior analytically, so that only
simulation and real experiments remain for investigation of
self-organized and emergent phenomena in collective robotic
systems.

Comparing to the multi-robot organism, we observe an-
other problem. Usually, emergent phenomena are quite slow
and have a probabilistic character. It means that most robots
in a swarm ’obey’ mezoscopic social rules, however there
are always a few robots which are doing something else.
In organism we expect a well-coordinated behavior of all
components. This concerns actuation, sensing, information
transfer, and most of all, collective decision making. Cur-
rently it is not clear how to implement a transition from
collective self-organized behavior in a swarm in strongly
coordinated collective behavior of the organism. We suggest
using a genome-based control of the organism, as described
in Sec. V.

Behavior: Generalization and specialization. Swarm
robots are in the most scenarios homogeneous, they have
the same hardware and software. The extension boards of
Jasmine robots can carry additional elements, like micro-
camera, ego-positioning sensors, but the "kern’ of all robots is

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

the same. The homogeneity of hardware and software reflects
in turn in pretty homogeneous behavior of robots. Robots can
play the roles of scout, messenger, "hungry robots’ and can
transit from one role into another one. However comparing
behavior of different roles, we can say it has the same level
of homogeneity, e.g. in all roles robot move, avoid collision,
getting hungry and so on.

We should remark that in some performed experiments,
e.g. experiments with collective energy foraging, the robots
can emerge a slight specialization of behavior. For example,
some robots move mostly around the docking station, per-
forming recharging more often than other robots. Such robots
get a kind of social parasites, consuming resources, whereas
other robots are working. This slight specialization has a
behavioral character and does not change the functionality
of robots.

Considering a multi-robot organism, we observe a strong
functional specialization of all robots. This specialization
depends on the position of the robot in the organism. When a
robot is somewhere around a ’joint’, e.g. a ’joint’ of driving
legs, the robot will functionally specialize in a specific
driving actuation. Robots in the middle of organism special-
ize more in controlling and information transfer, whereas
robots aside more in environmental perception. Therefore
here we encounter the issues of robots functionalization in
the organism.

Behavior: Adaptation and evolution. Basically all
swarm robots can individually learn with some unsupervised
feedback-based approaches. For example, the swarm density
and geometry of arena impact most motion characteristics
(e.g number of collision avoidances) and in turn, energy
consumption. Robots change motion velocity to achieve a
minimal energy consumption, i.e. they learn to behave in
such a way which requires less energy. Moreover, robots in
a swarm can also undergo collective adaptation to environ-
mental changes. The whole swarm is capable for learning,
this appears as simultaneous changing of some parameters in
many robots. As an effect we observe a changed collective
behavior.

Multi-robot organism has essentially more degrees of flexi-
bility, it can change its own form and so its own functionality.
It can appear different locomotion and actuation strategies.
Finally, by changing scenarios-specific tools, organism can
even perform different operations. The reasonable question
is how the organism should learn adaptation to environment
? We do not have any answers on this question now. How-
ever we believe that evolutionary strategy, like evolutionary
learning, can be very useful here.

Organism-specific issues: flexibility of software and
hardware. One of obvious questions in robotic community is
about flexibility of hardware and software. It is quite evident
that software is much more flexible. With some tools (e.g.
genetic programming) a program can even rewrite itself. The
hardware is more ’hard’. The question is whether a cellular
construction of multi-robot organism is a right way towards
hardware flexibility ?

1485

In nature we observe the diversity of cellular objects. In
fact, almost all cells have similar construction, however they
build completely different higher forms. When we consider
nature more closely, we should remark, that cells them-
selves are from structural viewpoints much more complex
than some multi-cellular live forms. When combining into
organisms, cells turn off some of their functionality and so
specialize in behavior. In this way a multi-robot organism, as
said even by Fucuda [16], can provide a required hardware
flexibility.

Organism-specific issues: shapes and functionality The
last issue, related to the organism, is the control of topologi-
cal shapes. Robots, when aggregating into an organism, can
do it in different ways and so emerge different functionality.
In Fig. 3 we demonstrate two different shapes (octopus-like
and snake-like) which have different locomotion strategies.
The question is how to control the building of shapes and so

Fig. 3.
of different topologies and different locomotion principles.

Topological models of two different multi-robot organisms

emergent functionality of the organism ? Evidently, that in
this stage we have more questions than answers. We expect
to clear these questions in a further research.

III. FROM SWARM ROBOT JASMINE III
TO SYMBIOTIC JASMINE V

Jasmine III plus. For performing the swarm-experiments
and testing the embodiment concept we used the microrobots
Jasmine, see Fig. 4. It is a public open-hardware development
at www.swarmrobot.org, having a goal of creating a simple
and cost-effective microrobotic platform and knowledge ex-
change in the swarm robotics community. The micro-robot
is 26x26x20mm, uses the two Atmel AVR Mega micro-
controllers: Atmel Mega88 (motor control, odometry, touch,
color and internal energy sensing) and Megal68 (communi-
cation, sensing, perception, remote control and user defined
tasks). Both micro-controllers communicate through high-
speed two-wired TWI (I12C) interface. It has generally on
board 24kb flash for program code, 2kb RAM for data and
1kb nonvolatile EEPROM for saving working data.

The robot has six (60° opening angle) communication
channels (they are also used for proximity sensing) and
one geometry-perception-channel (15° opening angle) based

1486

Fig. 4.

The microrobot "Jasmine III plus’.

on separate IR receivers and transmitters. Communication
area covers 360° rose-like-areal with maximal and minimal
ranges of 200mm and 100mm correspondingly. The physical
communication range can be decreased through a change
of sub-modulation frequency. The robot has also a remote
control and robot-host communication (up-link and down-
link), which is isolated from all other channels (through
modulation).

The robot uses two DC motors with internal gears, two
differentially driven wheels on one axis with a geared motor-
wheels transmission. Encoder-less odometrical system nor-
malizes a motion of the robot (the robot is able to move
straight forward and backward), and estimates the gone
distance with accuracy of about 6% and a rotation angle
- of 11%. Jasmine III uses 3V power supply (from 3,7V
Li-Po accumulator) with internal IC-stabilization of voltage.
Power consumption during motion is about 200mA, in stand -
6mA, in stand-by mode less 1 mA. The time of autonomous
work is of 1-2 hours. The robot has an internal energy sensor
(hungry feeling) and is also capable of autonomous docking
and recharging.

The programming of the robot uses C language with
open-source gcc compiler, there is a complete BIOS system
that supports all low-level functions. Moreover, for a quick
implementation of swarm behavior there is a developed
jasmine-SDK system, that includes an ’operational system’
and high-level functions. SDK allows a quick implementation
of robotic swarm programs and supports two ’operational
systems’, one based on MDL (Motion Description Language)
and another one based on Autonomy Cycle.

Basically, Autonomy Cycle executes continuously four
steps: reading of sensor data, communication, making a
decisions and finally executing a plan. The interruption
service takes care about software and hardware interruptions.
The plan, that a robot has to execute, represents a Petri
net consisting of two parts: service part (handlers for inter-
ruptions) and user-defined-part (behavioral program for the
robot). The structure of service part represents an interruption
vectors system with corresponding handlers. The interrup-

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

tions (like touch or low-energy) are generated by the BIOS
system, users only need to write the corresponding handlers.
For further details of construction and programming see
www.swarmrobot.org or e.g. [14].

Jasmine V. The symbiotic Jasmine V is based on the
described Jasmine IlIp and includes additional docking el-
ements for aggregation and corresponding electronics (cur-
rently under development). The most critical operation for
multi-robot organism is the self-assembling from separate
robots into one organism. For this we tested possibility and
accuracy of docking approach with current Jasmine Illp
robots. Robots are lead by IR light, emitted by the first
robots. The second robots, by following this light, try to
dock to the first robots, see Fig. 5.

@ University of Stuttgart

1 nstiute of Peralel and Disiibuted Sysfoms

® University of Stuttgart

B nstiute of Poraliel ond Dislributed Systems

s o

(a) (b)

; &
x o

® University of Stuttgart

{0 inettuste of Porallel and Disibuted Systems BB neuto of Parollel and Disirbted Seferns

ol |

©) (d)

@ University of Stuttgart

Fig. 5. Test of docking approach with Jasmine Illp. (a) Original
state of two robots; (b) Difference images (each second) of the
first attempt of docking; (c) Difference images (each second) of the
second attempt of docking; (d) final state of robots.

As demonstrated by many experiments, accuracy of dock-
ing is about +-5mm. Based on these experiments we de-
veloped the first prototype of the robots capable for self-
assembling, shown in Fig. 6(a). Each robot has three female
docking connectors and one male docking connector in the
front of the robot. Two female docking connectors are placed
in the wheels, so that robots have individual locomotion
based on a differential drive. These docking connectors can
rotate. The third female docking connector is placed behind
and is capable for vertical rotation. It has a strong motor.
Male docking connector has a hook-based lock mechanism.
All female connectors and hook-based lock are driven by DC
motors, integrated into plastic chassis. Transmission between
motors and wheels is done by a worm gear, as shown in
Fig. 6(b). Advantage of the worm gear is that this can fix
the position of wheels, so that it can statically keep the
required position (configuration of the organism) and does

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

(b)

Fig. 6. (a) The first prototype of the robot capable for self-
assembling in a multi-robot organism; (b) The worm gears con-
necting integrated motors and wheels.

not consume energy in this mode. In this way, each robot has
two degrees of freedom: one vertical-plane rotation behind
with strong forces and one rotation around the wheel axis.

IV. THE FIRST TOPOLOGICAL EXPERIMENTS

Before further development of self-assembling robots, we
performed a series of topological experiments. They are
related to capabilities of planar self-assembling and demon-
strated 3D topologies; a relation between individual degrees
of freedom (DOF) and collective DOF for the organism;
locomotion principles and finally encountered open points.

1. Planar self-assembling and 3D topologies. The in-
tended self-assembling process is performed on the surface,
where the swarm robots are moving, see Fig. 7(a). One robot
starts to send an attraction signal. Later on, this robot will
be a seed point of the whole self-assembling. The docking
approach utilized the IR-based scheme, developed and tested
on Jasmine IlIp robots (shown in Fig. 5). It is expected that
each robot has IR emitters and transmitters on each docking
connector. At this development stage, it is not clear whether
all robots will be equal (similar) or they will differ in their
construction. Therefore we can assume that during the self-
assembling procedure either every robot can be attracted to
the organism or only specific robots will be allowed for
docking, Fig. 7(b). In this state robots can either finish
building the whole organism, see Fig. 7(c), or they create
only some autonomous parts of the organism. When robots
are docked, they start electrical and logical processes of
integration in the organism. After that organism starts its
own locomotion (e.g. stands up) and starts its own ’life’ as
an organism, see Fig. 7(d).

1487

Fig. 7. Intended planar self-assembling of swarm robots into a
multi-robot organism.

2. Individual and collective degrees of freedom. We are
interested whether the chosen individual degrees of freedom
(DOF) allow enough collective DOF for the organism. In
Fig. 8 we demonstrate a few configurations of the organ-
ism and appeared DOF. Generally, we can say that each
connection to the rotational connector increase DOF by
one. Using different rotational connectors, the organism can
obtain different vertical, horizontal and rotational DOF.

Combining several DOF, the organism can demonstrate
different locomotion principles, as shown in Fig. 9:

- Wheeled Motion. The most simple locomotion principle
is using its own wheels, as shown in Fig. 7(a),(b). In this
stage robots are alone (robot swarm scenario) or have small
two-, three robots conciliations.

- Snake-like. This locomotion principle, shown in
Fig. 9(a), is similar to a classical waves-driven locomotion.
When all robots are connected only by using the back
connector (IDOF), the produced 1D waves are instable.
Therefore we suggest using interconnections between back-
and rotational- connectors.

- Snake-legs. Combining rotational connectors with snake-
like locomotion, we obtain interesting configuration, see
Fig. 9(b), where robots can use short legs when encountering
obstacles.

- 4 legs configuration. The shown configuration in
Fig. 9(c) is quite standard ’octopus-like’ locomotion used
in many reconfigurable robotic systems.

- 6 legs configuration. The 6-legs configuration in Fig 9(d)
represents some possible extension of the *octopus’. Combin-
ing more different modules, organism will be capable of more
advanced 8-, 10- or 12- legs locomotion even with flexible

1488

(©)

Fig. 8. Degrees of freedom for the organism when working in
different configurations. (a) 1 DOF when robots are assembled by
using only the back connector; (b) 3 DOF when using one rotational
connector; (¢) 5 DOF when using two rotational connectors.

connection between legs.

3. Encountered open issues. In the first topological tests,
we encounter the following problem. As already mentioned,
all robots will use their available sensors, but change their
functionality. For example, the IR proximity sensors from
swarm scenario can be used as a ’virtual skin’ in the organ-
ism scenario. However, the organism requires such sensors
which are not available in a swarm robot. In Fig. 10(a)
we demonstrate an example, where the organism raises its
own leg. Topologically, the organism shifts the center of
mass and loses equilibrium. To stabilize equilibrium, the
organism has to sense the center of mass and to move so
long back until equilibrium will be achieved, see Fig. 10(b).
It is evident, that such sensors are not required in robot
swarm scenario. Moreover, it is completely unclear now,
which specific functionality is required and how to achieve
this functionality in emergent/evolutionary way.

V. GENOME-BASED CONTROL OF THE ORGANISM

In this section we briefly introduce the intended genome-
based control concept of the organism and the preliminary
experiments with Jasmine IIIp robot. As already mentioned,
the organism will be controlled through a genome frame-
work. A genome of an artificial organism carries the total
set of genes of an individual it also includes the heredi-
tary instructions for building, running and maintaining the
organism. Genes are a location of the genomic sequence
and act like a unit of inheritance and hence build up a

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

(©) (d)

Fig. 9. Different locomotion principles, obtained by combining
several DOF.

() (b)

Fig. 10. Example of extra sensors. (a) Organism raises its own
leg, the center of mass is shifted forwards and organism loses
equilibrium; (b) Shifting the center of mass backwards to stabilize
its own spatial position.

genome [17]. Genes are functionally complete and consist
of small ’states’ (by analogy to biological ’bases’). For
example, the function 'move’ is a gene and consists of
different states that control a movement. Using these states,
it is possible for genes as well as for the whole genomes to
be manipulated through recombination, mutation or specific
learning approaches. This feature will be exploited in the
genetic software framework.

This framework extends the already mentioned control
concept and has the following five stages: Read proxim-
ity, Communication, Planning, Genome Interpretation and
Execution. Read Proximity is the first stage in which the
values of the sensors are read. Using these values, the
autonomy cycle is continued and checks for messages. If
there is one, then communication is activated. The cycle
continues into the Planning stage which performs simple
planning (control) activities. As mentioned in Sec. III, the
behavior of the robot is controlled through Petri nets. In the
genetic framework, this Petri net is dynamically generated
by the Interpreter. The Interpreter reads the sequence from

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

the symbolic sequence, representing the encoded genetic
information, and transforms it into executable Petri net(s).
During Execution phase, token travels through this net,
where the corresponding commands are finally transferred to
actuators and executed. The symbolic sequence of encoded

2% layer

descriptive part | | structural part

g
=
S GA, GP,
genetic learning
1% layer l &

encoded genetic information (functional part) |
g I _
= - X environment
S library interpretor |<7
S ecology
<
S

software framework

u Petri Net

()

encoded genome

encoded gene

—
¢]

encoded gene encoded gene

Transitional State: 0- 39

Conditional State: 40- 99

Executable State: 100 - 200

Jump State: 201 - 255
(b)

Fig. 11. (a) Structure of encoding process; (b) Structure of encoded
functional part.

functional part can have a maximum of 2!6 elements and
consists of executable, conditional, transitional, regulative
and jump states, see Fig. 11(b). Executable states determine
the actions which control behavior of the robot. Conditional
and regulative states decide the transitions to be made while
reading the genome. The transitions point to executable
states.

The sequence of the encoded genetic information is gen-
erated by the sequencer. Sequencer reads structural and
descriptive parts, and generates a sequence of commands for
creating a behavioral Petri net. Sequencer not only parses
symbolic streams, but can also apply different evolution-
ary/learning operators (such as GA, GP, evolutionary neural
networks, genetic learning) to the descriptive genome. The
embodiment of the robots, i.e. possibilities and limitations
imposed on functional behavior through a physical construc-
tion of a robot, are coded in the structural part. The combina-
tion of variable descriptive part and hard-to-modify structural
part eliminates the possibility of creating unwanted functions
(i.e. such functions which are impossible for a robot) in
the encoded functional genome. Due to recombination or
mutation in the descriptive part, variation in the genotype

1489

is implied. The descriptive and structural parts are so-called
genotype of the robot.

Advantage of splitting genetic information on three lev-
els (descriptive, structural and encoded functional) is the
following. The same functionality of the robots (e.g. sense
collisions) can be implemented in many different ways,
it depends on the available sensors, actuators and other
capabilities. For example, “sense collisions” can be done
by IR-proximity sensors, by processing of camera images,
by laser scanners and so on. The descriptive genome only
contains abstract “sense collisions”, whereas the encoded
functional part contains a low-level implementation of “sense
collisions”. The structural part plays a role of generating
rules, which transform abstract descriptions into concrete
implementations on a specific robot platform. However, the
encoded functional genome can also possess such modifica-
tions which are not directly contained in the genotype. For
example, environmental influences, cooperation with other
robots can directly influence an encoded functional genome.
Since this implies a behavior of robots and involves artificial
ecology, the interpretation of encoded functional genome can
represent a phenotype of the robot.

Not only genotype, but also phenotype of robot can
undergo evolutionary operations. For example, by using IR
local communication or the wireless ZigBee modules, the
encoded genome of one robots can easily be overwritten by
encoded genome from other robots, see Fig. 12. This allows
Move

Check for obstacle
Collision avoid /

1% genome
z
E
Transition state to 103 execution state %
Check if path is free . %
Idle Docking é
£
2" genome
Fig. 12. Mutation-Adding/overwriting of encoded functional
genome.

us to evolve the encoded functional genome during runtime.
We refer the capability of on-line modification of encoded
functional genome to the virtual robot sexuality.

On the current state of research, it is evident, that de-
scriptive, structural and functional parts of genetic informa-
tion contain different species-related and individual-related
genetic information on different levels of abstraction. Any
changes, caused by off-line (based on generations change:
GA/GP) or on-line (based on changes during individual life-
time: evolutionary learning) approaches can be stored ei-
ther in species-related or individual-related genetic memory.
However it is completely unclear now, which consequences
has it for the robot organism and the robot population.

VI. CONCLUSION

In the given paper we have shown a new paradigm in
collective systems, where the robots in the swarm scenario

1490

get capable of self-assembling into a single multi-robot
organism. The robots can aggregate and disaggregate au-
tonomously in different topological forms. We demonstrated
that a transition between robot swarm scenario and multi-
robot organism represents a very hard problem and involves
hardware, software and behavioral issues. We investigated
accuracy of docking approach for the existing Jasmine Illp
robots and developed the first prototype of robots capable
for working in both, swarm and organism, scenarios. For
this prototype we also investigated topological issues related
to the degrees of freedom and briefly demonstrated the
control concept involving robots genome. Based on these
experiments, we are currently developing fully functional
robots. This represents the further works.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from
natural to artificial systems. Oxford University Press, New York, 1999.

[2] S. Camazine, J-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau. Self-Organization in Biological Systems. Princeton
University Press, Princeton, NJ, USA, 2003.

[3] Thomas H. Labella, Marco Dorigo, and Jean-Louis Deneubourg.
Division of labor in a group of robots inspired by ants’ foraging
behavior. ACM Trans. Auton. Adapt. Syst., 1(1):4-25, 2006.

[4] I-Swarm. [I-Swarm: Intelligent Small World Autonomous Robots for
Micro-manipulation, 6th Framework Programme Project No FP6-
2002-1ST-1. European Communities, 2003-2007.

[5] S. Kornienko, R. Thenius, O. Kornienko, and T. Schmickl. Re-
embodiment of honeybee aggregation behavior in artificial micro-
robotic system. Adaptive Behavior (accepted for publication).

[6] swarmrobot.org.

[7]1 H. Haken. Synergetics: An introduction, third edition. Springer-Verlag,
New York, 1983.

[8] A. Ishiguro and T. Maegawa. Self-assembly through the interplay

between control and mechanical systems. In Proc. of IEEE/RSJ06

Int. Conf. on Intelligent Robots and Systems, pages 631-638, Beijing,

China, 2006. IEEE.

S. Murata, K. Kakomura, and H. Kurokawa. Docking experiments of a

modular robot by visual feedback. In Proc. of IEEE/RSJ06 Int. Conf.

on Intelligent Robots and Systems, pages 625-630, Beijing, China,

2006. IEEE.

[10] G. Weiss. Multiagent systems. A modern approach to distributed
artificial intelligence. MIT Press, 1999.

[11] J.Y. Halpern and Y. Mosesi. Knowledge and common knowledge in a
distributed environment. J. of the Association for Computer Machinery,
37(3):549-587, 1990.

[12] S. Kornienko, O. Kornienko, and P. Levi. Collective ai: context
awareness via communication. In Proc. of the IJCAI 2005, Edinburgh,
UK, 2005.

[13] A. Martinoli. Swarm Intelligence in autonomous collective robotics:
from Tools to the analysis and synthesis of distributed control strategies
PhD Thesis. Lausanne, EPFL, 1999.

[14] S. Kornienko, O. Kornienko, and P. Levi. Ir-based communication
and perception in microrobotic swarms. In Proc. of the IROS 2005,
Edmonton, Canada, 2005.

[15] S. Kornienko, O. Kornienko, and P. Levi. About nature of emergent
behavior in micro-systems. In Proc. of the Int. Conf. on Informatics in
Control, Automation and Robotics (ICINCO 2004), Setubal, Portugal,
pages 33-40, 2004.

[16] T. Fukuda and T. Ueyama. Cellular robotics and micro robotic systems.
World Scientific Publishing Co. Pte. Ltd., 1994.

[17] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts, and Peter Walter. Molecular Biology of the Cell. Garland
Science, March 2002.

[9

—

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

