
Flexible manufacturing process planning
based on the multi-agent technology

S. Kornienko, O. Kornienko, P. Levi

Institute of Parallel and Distributed High-Performance Systems
University of Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany

ABSTRACT

Flexible manufacturing systems working in highly
dynamic modern markets requires innovative concepts to-
wards flexible management, production scheduling and
planning. The agent-based technology provides a desired
flexibility, supports a short reaction time and can under-
lie the required planning mechanismes. Moreover it does
not require any centralized elements allowing a distributed
implementation and essentially increasing a reliability of
common system. A specific software architecture supports
this flexibility and enables an adaptive reaction on distur-
bances often arising in production.

KEY WORDS
Flexible manufacturing system, multi-agent systems.

1 Introduction

Globalization of national markets created a high level of
competition that only quickly reconfigurable production
systems can survive in. That concerns not only the de-
velopment processes, that should be essentially shortened,
but also the manufacturing process itself. Manufacturing
should become oriented to fabrication on demands of client
with unique specifications (e.g. [1]). These requirements
mean a flexibility of almost all processes of a modern fac-
tory and primarily relates to planning processes. Planning,
especially the process planning, has to be distributed and
stable to different changes (disturbances) corresponding to
”fabrication on demand” as well as to production malfunc-
tions.

The concept of multi-agent system (MAS) [2] can un-
derlie the mentioned planning processes. The MAS-based
processes are distributed, moreover the ”negotiation-based
programming” provides for the problem solving (decisions
making, planning, etc.) essentially more degree of freedom
than traditional centralized systems. That allows reacting to
short-term disturbances, supporting self-maintenance, in-
tegrating into autonomous manufacturing. The agents be-
haves autonomously, takes decisions and can communicate
with human or non-human workers. It enables creating
complex autonomous manufacturing structures.

The represented further approach is addressed to the

agent-based process planning, where the production orders
should be assigned to available machines, taking into ac-
count the technological, organizational restrictions as well
as optimization criteria. The main point of consideration is
focused on a flexible structure of multi-agent system that is
provided by specific software architecture. This structure
allows the planning system to adapt to changes of environ-
ment so that to perform the planning successfully further.
The main notions of the suggested approach are described
in form of specification language, based on the extended
Petri networks. This exemplifies the proposed ideas and
shows several implementation details. Finally, the agent-
based optimization is briefly discussed.

2 Process planning problem

The following scenario is based on a flexible manufactur-
ing system (FMS). The FMSs represent a sequence of the
processing machines, being able to perform different man-
ufacturing operations without retooling. In the given ex-
ample the FMS has to manufacture a multitude of parts and
variants of workpieces determined by corresponding pro-
duction orders. A manufacturing of a workpiece consists
of different steps and requires a corresponding plan that is
known as process planning. Moreover each type of work-
pieces has own technology, i.e. the manufacturing consists
of different working steps (WS). These WS are defined by
a technological process, generally all these WS cannot be
processed on one machine. Each from the working steps
has different length and cost.

The working steps can be executed only by the spe-
cific machines that are able to perform the required opera-
tions. Moreover there is a technological order of these op-
erations (e.g. milling only after boring). Each working step
needs a preparation time that is added to common length
of working step. The general aim is to generate a plan of
how to manufacture these workpieces with minimal cost,
minimal time (or other optimization criteria), taking into
account the mentioned restrictions.

As can see, this problem belongs to so-called ”con-
straints” class of problems, where, firstly, an optimiza-
tion landscape is discrete (small islands on the landscape),
secondly, there is no continuous gradient. As suggested
by some authors this problem can be separated into con-

378-075 156

debbie




straints satisfaction (CS) problem and constraints optimiza-
tion (CO) problem. In the given work this methodological
way is used.

Figure 1. Example of a workpiece.

A processing of the workpiece shown in Fig. 1 con-
sists (as an example) of eight WS that include such opera-
tions as boring, milling, grinding in a defined order. These
working steps can be represented in the form shown in
Fig. 2, that is usually denoted as constraint network. Each
node is a variable with the corresponding domain of values,
representing the positions of a working step in a manufac-
turing queue. The aim of the approach is to restrict the
values of variables (or to find such values of variables) that
will satisfy all constraints.

Figure 2. Constraint network for the workpiece in Fig. 1.

Every node in this network gets a ”finish”-position of
a working step from previous node. Using this value, a
current node looks for ”start”-positions of the next work-

ing step that satisfy local constraints, calculates ”finish”-
positions and propagates them to the next node. If no po-
sition satisfying local constraint can be found, the node re-
quests another ”finish”-position from previous node. In this
way the network can determine locally consistent positions
of all WS. After that the obtained values should be tested
for a global consistence. In this way the CS approach de-
fines the consistent positions (an assignment plan) of all
WS in queues. However this assignment plan is not opti-
mal and requires the further optimization.

As mentioned, the main problem of process planning
consists in often arisen disturbances (like machine mal-
functions or urgent production orders). Several types of
these disturbances is shown in Table 1. Therefore the goal

Disturbances on: Example Reaction

management aims, appointments, long-term
level deadlines middle-term
organizational orders, lot size, short-term
level urgent order
technological product-technology middle-term
level process-technology long-term
resources level machines, supplies short-term

Table 1. Several types of disturbances.

of planning approach is not only to generate in distributed
way an optimized plan satisfying all restriction but also to
do it in presence of different disturbances. The next section
is devoted to application of multi-agent technology to this
problem.

3 Application of MAS

The CS (as well as CO) approach described in the previous
section is necessary and sufficient in solving the discussed
kind of assignment problem. Being implemented by one
of programming techniques, it will generate the required
plan. However working in a presence of disturbances re-
quires additional efforts to adapt the planning approach to
these changes. The principles of such an adaptation are
not contained in the plan itself, an additional mechanism is
needed. As mentioned in the introduction, the multi-agent
concept can be used as such a mechanism that lends to man-
ufacturing system more flexibility to adapt to disturbances.
But what is the cause and cost of this additional feature ?
There is a long discussion of this point based e.g. on the de-
centralization or several dynamics properties of MAS (e.g
in [2]). We would like to add the following argument into
this discussion.

The multi-agent system can be considered from a
viewpoint of theory of finite-state automata. Transition of
m-states automaton (with or without memory, it does not
change the matter) from one state to another is determined
by some rules (by a program), therefore the automaton be-
haves in completely deterministic way. If a control cycle

157



is closed (see e.g. [2]) the automaton is autonomous, i.e.
behaves independently of environment (other automata).
Now consider a few such automata coupled into a system in
the way that keeps their autonomy. Forasmuch as each au-
tomaton behaves according to own rules, there is no a cen-
tral program that determines a states transition of the whole
system. In the ”worst case” coupling n automatons with m
states, the coupled system can demonstrate nm states.

Evidently this ”worst case” has never to arise in the
system, but how to control a behaviour of the distributed
system without a central program (without a centralized
mediator) ? The point is that all automata are continu-
ously communicating in order to synchronize own states
in regard to environment, to the solving task, etc. (in this
case the notion of an automaton is replaced by the notion
of an agent). The agents during communication ”consider”
all possible states and then ”choose” such a state that is the
most suitable to a currently solving problem. This is a main
difference to the ”centralized programming” approach. The
central program can react only in such a way that was pre-
programmed. For example 10 agents with 10 states can
demonstrate ���� different combinations. However no pro-
grammer is able to predict all situations to use all these
states. Thus, the ”centralized programming” approach re-
stricts the multi-agent system although there are essentially
more abilities to react.

The sufficient number of degrees of freedom repre-
sents a key problem of multi-agent technology. On the one
hand if the system is hard restricted in the behaviour, the
advantage of MAS is lost. On the other hand, if the system
has too many degrees of freedom it can communicate an
infinitely long time. In other words only several combina-
tions of agents states have a sense and the point is how to
achieve and to manage these states. This is a hard prob-
lem arising in many branches of science and engineering
and correspondingly there are several ways to solve it. The
suggested here solution is based on a hierarchic software
architecture that supports agent’s autonomy.

Before starting to describe an approach, it needs to
mention one methodological point concerning decentral-
ization of multi-agent system, shown in Fig. 3. The MAS
solves a problem by using some methodological basis. For
example the CS and CO approaches basically underlie the
solution of constraint problems. The point is that a method-
ological basis, in almost all cases, is formulated in a cen-
tralized way. It looks like a ”battle plan”, where all agents
and their interactions are shown. Therefore this global de-
scription is often denoted an interaction pattern.

However the agents do not possess such a global point
of view and the interaction pattern has to be distributed
among agents. This decentralization concerns global infor-
mation, messages transfer, synchronization, decision mak-
ing and so on. The decentralized description of the cho-
sen method should determine an individual activity of an
agent as well as its interaction with other agents. It is also
important that all agents behave in ordered way, i.e. to
include cooperation mechanisms (protocols) into this dis-

Figure 3. Methodological approach.

tributed description. In order to enable a transition from the
interaction pattern to the cooperation protocol (see Fig. 3)
a notion of a role is introduced [3]. A role is associated
with a specific activity needed to be performed (according
to a methodological basis). Agent can ”play” one role or
a sequence of roles. In this way interactions are primar-
ily determined between roles, an agent (with correspond-
ing abilities) handles according to the role playing at the
moment. An advantage of this approach is that the central-
ized description (familiar for human thinking) is preserved
whereas the roles in the interaction pattern are ”in fact” al-
ready distributed, i.e. a mapping ”agent-on-role” may be
performed in a formalized way by a program. Thus, an in-
teraction pattern is a ”mosaic image” that from afar looks
like a common picture (method), but at a short distance is
a set of separate fragments (roles). Moreover a concept of
roles allows decoupling the structure of cooperation pro-
cesses from agents organization, so that any modifications
of agents do not affect the cooperation process and vice
versa [3].

The interaction pattern determines a primary activity
(primary algorithm) of multi-agent system. The primary
algorithm includes also some parameters whose modifica-
tions can be commonly associated with disturbances. Vari-
ation of these parameters does not disturb an activity of
agents. In this case these are the expected disturbances,
a reaction of the system on them is incorporated into the
primary algorithm. However due to specific disturbances
every agent can reach such a state that is not described by a
primary algorithm and where a performing of the next step
is not possible. In this case the agent is in emergency state
and tries to resolve the arisen situation all alone or with an
assistance of neighbour agents (secondary activity). If the
abilities of an agent are not sufficient or it requires addi-
tional resources it calls a rescue agent. The rescue agent
is an agent that possesses specific (usually hardware) abil-

158



ities. Anyway, the aim of agents in emergency state is to
change a part of the primary algorithm so that to adapt it
to disturbances. The disturbances causing local emergency
are expected (predicted) but not introduced into the primary
algorithm.

The primary algorithm as well as its parametrisation
is optimal only for specific conditions. If disturbances
change these conditions the primary algorithm became non
optimal and it has no sense to repair it. All agents have col-
lectively to recognize such a global change and to make a
collective decision towards replacement of the primary al-
gorithm. This change corresponds to a global emergency.
The disturbances causing the global emergency are not ex-
pected (predicted), however they influence the conditions
of primary algorithms and in this way can be recognized.
Finally, there are such disturbances that cannot be absorbed
by any changing of an algorithm, they remain irresolvable.
Now we start to describe the mentioned primary algorithm
as well as emergency states in the language of cooperative
processes.

3.1 The primary algorithms

In the case of an assignment planning, the primary algo-
rithm is determined by the CS approach described in sec. 2.
Each working step in the approach is represented by a node
in the constraint network shown in Fig. 2. These nodes are
separated from one another, moreover their behaviour is
determined by propagations. Therefore it is natural to give
a separate role to each node. However before starting a
propagation, this network has to be created and parameter-
ized by technology, machines, number of workpieces and
so on. These two steps (parameterization and propagation)
will be described by interaction patterns using correspond-
ing roles.

As already mentioned, the primary algorithm consists
of two parts, parameterization and propagation, that repre-
sent a linear sequence of activities. The parameterization
part, shown in Fig. 4 has three phases p�, p�, p� whose
main result consists in determining a structure, neighbour-
hood relations and parameterization of nodes of the con-
straint network. The roles ��� �� are ”Initializers” of WS-

Figure 4. Primary algorithm: Parameterization part.

order and WS-nodes correspondingly. The role �� is acti-
vated by the first production order, this role reads resource-

objects and determines how much nodes (WS-roles) are
required. The transition t� proves whether the result of
j�returnEND�� is true (action is successful) and activates
�� with parameter n as a number of required nodes. The
�� initializes each node according to all restrictions (tech-
nology, propagation rules, number of machines and so on).
If this activity is also successful (transition t�), the third
role �� is activated. It connects the created nodes (return
a pointer to previous node), composing in this way a net-
work. This interaction plan is finished (transition t�) if
there exists no next node needed to be connected.

The propagation part, shown in Fig. 5, consists of

Figure 5. Primary algorithm: Propagation part.

three blocks: local (the phases p�� p�� p�), global (the phase
p�) propagations and an activity (the phase p�) in the case
of empty sets. The roles ��� �� determine the propagation
in the first and last nodes whereas �� does the same for
all other nodes. The transition t� proves whether the local
propagation was successful for all nodes and activates then
the global propagation in ��. We emphasize the local prop-
agation requires a sequential executing of roles whereas in
global propagation all roles can be in parallel executed. Fi-
nally, the transition t	 proves whether the values set (WS-
positions) of each node is empty. In the case of empty sets
the role �� tries to increase initial areas of values, first lo-
cally in neighbour nodes, then globally by restart of the
local propagation.

3.2 The local and global emergency

As mentioned, an agent playing a role performs some ac-
tivities whose results are tested by the transition. The local
emergency arises when the results at transitions are of such
a type that cannot be processed by the transition or there are
generally no results. In both cases an agent cannot finish
a current role and executing a common interaction pattern
is stopped. The local emergency has a natural analogy in
real manufacturing. The manufacturing can be disordered
by failures, by absence of resources, by fire and so on. In
each case the reason of disorder is different however the
classification enables to react on a disorder in a predicted
way. In each case there is a schema of how to react, e.g.
at fire alarm. The point is whether a manufacturing is able

159



to react by all alone, or it needs additionally a specific re-
sources/abilities like a fire brigade.

The agent playing a current role cannot perform
recognition of emergency. For this aim a so-called activity
guard agent is needed whose macroscopic interaction pat-
tern is shown in Fig. 6. In phase p� it observes an execution

Figure 6. Macroscopic interaction plan for local emergency.

of agent’s activities and in the case either the ”wrong type
of variables” or ”time out” messages at transition occur the
guard agent activates the phase p�. Here the concept of the
error-return-code (ERC) is utilized, that allows identifying
the arisen problem. Typical example of the basic ERC is
I/O messages known in each programming language. Each
activity performed by an agent is equipped with a set of
ERCs including resources ERC, activity ERC and so on.
Based on this returned code a specific problem solving pro-
cess can be started. If a ERC is returned, the phase p� is
activated, otherwise the software-rescue agent (role ��) is
called. The problem solving process in phase p� requires
specific resources and abilities. If a current agent possesses
these, this agent (roles ��� ��) resolves the problem. Other-
wise a specialized rescue agent (role ��) with the required
abilities will be called. The roles ��� �� represent in turn
interaction patterns of a complex nature that are hierarchi-
cally called when the corresponding role is activated. The
interaction pattern for the problem-oriented rescue roles is
not described, because their reaction is evident and more-
over they depend on the implementation details.

However at the ”time out” messages an agent cannot
be able to form the error-return-code. This situation points
to the case when an agent cannot accomplish internal activ-
ity cycle not because of absence of resources (i.e. problem-
oriented emergency), but because of internal confusions in
an agent’s program. In this case the software-rescue (SR)
agent should be called. The first aim of the SR-agent is to
prove an internal structure of an agent in relation to current
data from sensors and communications. This can points
to internal software errors. The second aim is to estimate
the problems in external activity that lead to the ”time out”
emergency.

The idea of SR agent is based on the autonomy cycle
shown in Fig. 7. The autonomy cycle represents the com-
mon steps that any agent cyclically executes. If there is an
emergency of this kind it means that a problem has arisen

on some of these steps. The SR agent simulates the dis-
torted role (roles) first with ideal input/output data. When
this simulation is successful, the SR-agent replaces step-
wisely each input/output by real one until the problem is
brought to light. However there exists one critical point
concerning the reaction of SR-agent on the detected prob-
lem. At least in the given implementation the SR-agent
reacts only by sending a corresponding error-message.

Figure 7. Autonomy cycle of an agent.

Global emergency arises when the multi-agent sys-
tem is no longer able to follow the primary algorithm and
to react adequately on the emerged disturbances. The dis-
turbances causing the global emergency cannot be nearly
identified however they can be recognized by the left ef-
fects. Firstly, they disturb the global criteria underlying
methodological approach so that it is not more valid or,
secondly, local emergency is not resolvable even by rescue
agents.

In the first case the disturbances achieve some quali-
tative threshold that completely disturbs the primary algo-
rithm. For example, if the technology will be so changed
that the most restrictions will disappear. This leads to the
agent’s state space that after the CS approach is equal (or
almost equal) to initial space, i.e. the original methodolog-
ical assumption is not more valid. The mentioned distur-
bances has a global nature that influences all agents. In
order to recognize this effect, all agents have to perform a
negotiation and to make a collective decision [4].

The second reason causing global emergency is an ir-
resolvable local emergency. Before to declare a state to be
generally not resolvable, an agent (even rescue agent) trans-
fers information about the problem to other agents in hop-
ing they have the needed resources/abilities and can solve
a problem. This solution may have also a local or global
form. In local case another agent takes over the solution of
the problem that is equivalent to the local emergency dis-
cussed in the previous section. The global form means the
mentioned global change.

Now, the point is of what kind of global change is
required by global emergency in the agent group ? If the
methodological approach is no more valid or the agents, us-
ing all current interaction pattern, are not able to resolve the

160



arisen problem, it is natural to change this interaction pat-
tern. However the question is which new interaction pattern
should arise (and not less important - how should it arise) ?
Generally, there are two possibilities, either to use in ad-
vance made interaction patterns or to generate this pattern
dynamically by a request. The generation of an interaction
pattern represents a separated point that needs a description
of required semantics, parsers and so on. Because of this
reason as well as high complexity of such a generator it is
a future outcome. If the measures undertaken in case of
global emergency are insufficient and do not lead to reso-
lution of the problem, the multi-agent system declares the
current state as irresolvable.

4 Agent-based optimization

The approach described in the previous sections allow gen-
erating the sequence of working steps that satisfies all local
constraints. However there are two important steps, that the
optimization needs to be performed on. The first of them
is an order of the working steps in the group 2 and 3 (see
Fig. 2). This optimization can be performed by exhaus-
tive search. The second point concerns the local decisions
(concerning machine and position) made by agents. But
the search space (taking into account the forecasting effect)
grows in this case exponentially and e.g. even for 16 agent
(2 production workpieces, forecast for next 4 positions)
comes to � ��	. Therefore exhaustive search methods like
constraints optimization are inefficient even on very fast
computer. The search space can be essentially reduced if
to take into account the following observation.

The assignment planning for different workpieces
represents an iterative process where all iterations are very
similar to one another. In this way the whole assignment
plan represents a periodic pattern, that can be observed in
Fig. 8. Here there are two main patterns shown by black
and white colors (order of the working steps as well as their
positions on machines) that however differ in the last work-
pieces. It means that in case the optimal (or near optimal)
scheme for the first iteration is found, next iteration can
use the same scheme. The distributed approach being able
to treat this kind of pattern-like problem is known as ant
colony optimization algorithm (ACO) [5].

This method originated from observation of ants in
the colony. Going from the nest to the food source, ev-
ery ant deposits a chemical substance, called pheromone,
on the ground. In the decision point (intersection between
branches of a path) ants make a local decision based on
the amount of pheromone, where a higher concentration
means a shorter path. The result of this strategy represents
a pattern of routes where thick line points to a shorter path.
Similar strategy can be applied to local decisions of agents,
participating in the plan making.

Agents after the CS approach choose several assign-
ment plans from the generated set of them and form an op-
timization pool. These assignment plans can represent also
only segments of plans (these connected working steps rep-

resent independent parts of assignment plan) that satisfy
all formulated constraints. These segments/plans can be
combined into a common plan so that to satisfy the postu-
lated optimization criterion. Thus, the more optimal seg-
ments are included into this pool, the more optimal com-
mon plan will be obtained. The ACO algorithm marks (like
a pheromone rate) the optimal segments obtained on the
previous step. The fragments with the highest pheromone
rate are included into the top of pool. In this way agents
consider first the ACO-obtained sequence and try to mod-
ify it (e.g. using forecasting effect). Thus, an optimization
pool has always solutions with a high pheromone rate, from
them the most optimal one will be then chosen. Moreover

Figure 8. Assignment plans with different length and costs.

combining the near-optimal plans in the top of the pool, the
assignment plans with integral optimization criteria (com-
promise schema between length and cost) can be achieved,
as shown in Fig. 8.

5 Conclusion

The presented approach enables to react reasonably to dis-
turbances in manufacturing by using an agent-based ap-
proach. It does not require any centralized elements, that
essentially increases a reliability of common system. Sev-
eral problems such as a program generator or distributed
learning still remain unsolved and are destined for further
investigations.

References

[1] H.-P. Wiendahl, Wandlungsfähigkeit, wt Werk-
stattstechnik, 92(4), 2002, 122-127.

[2] G. Weiss, Multiagent systems (MIT Press,1999).

[3] M. Muscholl, Interaction und Kooperation in MAS
(Stuttgart: PhD thesis, University of Stuttgart, 2001).

[4] O. Kornienko, S. Kornienko, P. Levi, Collective deci-
sion making using natural self-organization, Proc. of
CIMCA’2001, Las Vegas, USA, 460-471.

[5] D. Corne, M. Dorigo, F. Glover (eds.), New ideas in
optimization (McGraw-Hill, 1999).

161


	Table of Contents

