
Multi-agent repairer of damaged process
plans in manufacturing environment

S. Kornienko, O. Kornienko, P. Levi
Institute of Parallel and Distributed Systems,

University of Stuttgart, Universitätsstr. 38, D-70569 Stuttgart, Germany

Abstract. Modern manufacturing is highly dynamical and complex environment. Reg-
ular processes in this environment can often be perturbed by different disturbances
(failures). Unpredicted nature of some disturbances represents a hard problem for
a planning system. To react reasonably to these disturbances, the planning system
should possess a huge state space. The reactions should be either included into this
state space or generated dynamically. Application of multi-agent technology for such
a generator, performing a dynamic replanning (or repairing a damaged plan), is pro-
posed. The main focus of the consideration lies on a distributed algorithms of symbolic
tasks decomposition.

1 Introduction

Modern manufacturing operates in quickly changing environment. Reasons for these changes
(disturbances) are different: competition in global markets, change of consumer properties,
technological innovation, failures and so on . To survive, enterprises are forced, among other
arrangements, to react dynamically to disturbences, to have flexible (transformable) structure
on all levels of organization [1]. This work focuses on one aspect of this transformability,
namely on an adaptable planning of the lowest level, denoted as process planning. This plan-
ning is the most sensitive element in the production chain.

Disturbances can be of different types. The ”predicted” disturbances arise when some
parameters are changed, but the planning system contains a mechanism of how to perform
a replanning. This replanning often involves into a plan a huge number of states. Typical
example is a failure of processing machines. In principle, this failure can be absorbed by
rescheduling other machines. However if a manufacturing chain contains reconfigurable ma-
chines, the number of possible functional alternatives grows exponentially with a number of
such machines. ”Unpredicted” disturbances arise when there is no replanning mechanism,
absorbing them. To repair a damaged plan in this case, a replanning involves new states into
a plan.

The mechanism, repairing a damaged plan in both cases, is a part of MaPP (Multi-
agent Process Planning) system representing a rapid prototyping system for flexible man-
ufacturing control in turbulent environment [2], [3]. The idea is to apply AI and DAI ap-
proaches (DCSP/DCOP, reasoning and so on, see [4], [5]) to manufacturing PPC/APC sys-
tems (e.g. [6]). In this way, the replanning remains in the short-term planning horizon (that
reduces time and cost) and can react to wide spectra of disturbances.

485

Proceedings of the 8th International Conference on Intelligent Autonomous Systems
10-13 March 2004, Amsterdam, The Netherlands 



2 Autonomous systems in manufacturing

Autonomous planning systems, used in modern manufacturing, possess specific properties
and differ from other kinds of autonomous systems, e.g. mobile robots, UAV (Unmanned
Aerial Vehicle) [7] or stationary autonomous systems [8]. The main difference lies in a com-
plexity of input/output states. Since mobile robots or UAV operate in real (uncertain) envi-
ronment, the number of input states is huge. They are often of uncertain nature. The output
state space is essentially smaller. For example, UAV of WITAS’s projects can execute only
6-10 main activities (see description in http://www.ida.liu.se/ext/witas/). In contrast to them,
the input state space of manufacturing planning systems has a well defined and limited char-
acter (e.g. 150-200 states), but the output space consists often of thousands states. However
a real challenge is that some of these states can not be defined in advance, they should be
dynamically generated.

Figure 1: Example of a work-
piece to be manufactured.

To exemplify this affirmation, we briefly consider a pro-
cess planning for the workpiece shown in fig. 1. Manufactur-
ing of this billet consists of 17 working steps (WS) (see Step
NC [9]). Order of these steps is defined by technological net-
work. Each node in this network determines one processing
operation (i.e. WS), consisting of geometrical description of
required features and technological description of how to man-
ufacture them (fig. 2(a)).

Besides restrictions determined by technological network,
there is a lot of organizational, technical and other restric-
tions. This kind of problem can be formulated and solved as
constraint-satisfaction problem (CSP), details of approach and
constraints can be found in [2]. The final plan can be thought
of as an assignment between low-level jobs and available ma-
chines that satisfies all restrictions. As seen from fig. 2(b), this assignment can be of different
length and cost (depending on optimization criteria). In the following consideration we de-
note this assignment plan as the primary plan, and activities to generate it as the primary
activity of the planning system.

(a) (b)

Figure 2: (a) Geometrical description of features and corresponding production technology; (b) Two
assignment plans with different length and cost of the same manufacturing process (taken from [2]).

The produced in small series workpiece, shown in fig. 1, can be changed in customer
properties, in a number of pieces, in a time given for production, in priority of different
products. Change of customer properties can influence a manufacturing technology, techni-
cal basis (replacement or retooling of a machine), can require other resources. Moreover a

486



machine can fail, an instrument can break down, a supply of resources can be interrupted and
so on. Several types of these disturbance are collected in table 1(left).

Disturbances Examples Horizon
management aims, appointm., long-term
level deadlines mid.-term
organizational orders, lot size, short-term
level urgent order
technological product-technology mid.-term
level process-technology long-term
resources level machines, supplies short-term

Type of reaction N Examples
time/order 1 rescheduling
oriented 2 reordering

3 reoptimization
4 shift of deadline

technical/ 5 retooling
technological 6 oper. replacement
increase of 7 addit. machines
redundancy 8 increase buffer
management 9 extern. manufact.

Table 1: (left) Several types of disturbances; (right) Several types of reaction to disturbances.

We are mainly interested in sort-term disturbances, that occur during execution of the pri-
mary plan. The short-term disturbances deviate the executing conditions, so that the primary
plan can not be accomplished and gets damaged by disturbances. Sometimes a damaged plan
can anew be generated, but in the most cases it should be repaired. ”Repair” means the system
should generate a new plan, that changes the executing conditions of the primary plan so that
it can prolong an aborted executing. This kind of a plan we denote as the secondary plan and
activities to generate it as the secondary activity of a planning system.

There are different ways to react to each disturbance. For example, as a reaction to a ma-
chine failure we can: reorder or reschedule machines, retool or reoperate other machines, in-
crease a redundancy, produce a detail externally and so on. Some examples of these reactions
are collected in table 1(right). These reactions compose a tree of alternatives. We distinguish
between organizational and functional alternatives. Functional alternatives mean different
sequences of production activities (e.g. retooling or rescheduling), whereas organizational
alternatives mean macroscopic activities (e.g. to take from a lager, to produce externally and
so on). The alternative, utilized on the next planning steps, depends on the used alternatives
on the previous steps, moreover this dependence is nonlinear. There is no way to know be-
forehand, which route in this three of alternatives is cost- or time-optimal. In several cases,
the number of alternatives is so huge that they can not be preprogrammed in advance. Let us
consider this point on the example of planning system, shown in fig. 3(a).

(a) (b)

Figure 3: (a) Architecture of an autonomous planning system; (b) Architecture of the repair part from
fig. 3(a).

487



The goal of this system is to generate, to monitor and to repair a short-term process plan.
The system consists of two parts: the planning part and the part that is in charge of replanning
and repairing the primary plans. Whereas the first part is already considered in [2], [3], here
we focus on the second part of this system. In the field of mobile agents, this subsystem is
also known as dynamic planner, whose structure is shown in fig. 3(b).

Before start to describe the dynamic planner, let us estimate the worst case for a number of
functional alternatives. The workpiece shown in fig. 1 has 17 working steps, containing circa
130 geometrical and technological parameters, that can be perturbed. Adding management
and other disturbances from table 1(right), we have circa 200 possible disturbances. In the
worst case we assume that, firstly, each of these disturbances can be absorbed in 10 different
ways, secondly, these functional alternatives are applicable to all next working steps after
disturbance (e.g. to avoid an arisen bottle neck/lack of resources and to retain a deadline).
In this way we have circa 2000 functional alternatives for one detail and 10000 for a lot
of 5 details. For the average and best cases we assume there are some heuristic approaches
reducing this number.

Now we consider the wost case for a number of planning states. As an example, let us
assume a disturbance changes a diameter of the boring hole shown in fig. 1. As a functional
alternative the system chooses remanufacturing. However the exact reaction depends on the
exact kind of disturbance. If instead of 5 mm we have really only 1 mm, one can bore once
again with a drill diameter 5 mm. However if we get a hole 10 mm instead of 5 mm, there is
no way to repair it. Another question, what is to do if a boring angle (or drilling temperature
or something else) has been changed ? If we take into account all possible ways to disturb 130
technological and geometrical parameters of the workpiece in fig. 1(a), we achieve an enor-
mously big number of possible reactions (output plan state) and it is obviously that all these
reactions can not be preprogrammed in advance. In this case we can assume the disturbance
leads to an appearance of new states in the plan.

3 Multi-agent planning system

Consider the process planning problem more in detail. The plan P is a step-wise mapping
S between available machines M and working steps WS in a time window T bounded by
constraints Cg

S = {M × WS → T, {Cg}}, (1)

where S ∈ (SP1 ∪ S
P2 ∪ S

P3 ∪ ... ≡ S) and S is a state space of all plans and S
Pi are

corresponding subspaces. Global constraints Cg define manufacturing technology, e.g. the
order of operations, organizational and other requirements, applied to whole sequence of
WS. The state space S possesses an ordered structure and can be represented as sequences of
steps .., Sj

i−1, Sj
i , Sj

i+1,..., where subindex is the number of step and superindex is the number
of plan. This structure is determined by a transition Tr that connects the state Si with the
state Si+1

Tr = {Trj : Sj
i → Sj

i+1}, (2)

where also Tr ∈ Tr, Tr is a space of all transitions. As shown later, Tr is also structured
into several domains. The common plan can be written as

Pl = {Tr(S) → S}. (3)

488



All well-known planning approaches (e.g. MDP [10]) require that S and Tr are predefined.
For a small number of states (even hundreds of states) it does not represent a real problem.
However, if the number of states becomes huge or there are new states needed to be introduced
into a plan, the planning approach fails. Therefore our idea is, firstly, to introduce a generator
of new states Γ and, secondly, to transform a space Tr so that, at least, a part of it can be
dynamically generated by demand.

Let us first consider the generator Γ of new states. Per definition, there are no equal map-
pings S in S, however the question is whether there states are really unique or they can be
decomposed on some atomic constructions ? Looking at (1), we see that the time window
T and machines M are of elementary nature, only a working step WS is composed from
other terms. As followed from a definition of working step in Sec. 2, it consists of activity A
parameterized by technology (modality) D, geometrical descriptions of features F bounded
by constraints Cl WS = {A(D) → F, {Cl}}, where WS ∈ WS. Local constraints Cl de-
fine manufacturing technology (see the right side of fig. 2(a)), applied only to one WS. If we
consider e.g. WS5 ”mill” and WS6 ”fine mill”, the difference between them lies primarily
in manufacturing technology (the right part of fig. 2(a)) and only then in geometrical descrip-
tions of features (the left part of fig. 2(a)). Manufacturing technology for WS ”mill” consists
of 9 steps, preparing a machine for performing this operation. In several cases, e.g. a trans-
portation of a workpiece from one machine to another (see e.g. an assignment plan shown in
fig. 2(b)) it requires even more steps. In this way, each WS is composed from other activities,
being of elementary nature. Specifying a complete set of these atomic activities, we suppose
that in fact each arbitrary state of a process plan can be composed from them.

What kind of generator can be applied to this problem ? Analyzing the structure of this
problem, we remark one interesting intersection with the problem solving in multi-agent
(MA) systems. Speaking in a combinatoric language, the MA system of m agents each with
n internal states for time interval t is able to emerge nmt

combinations of internal states.
Transforming it to the manufacturing problem, we have 4 retooling activities (for reconfig-
urable machines): set mill, set drill, set bore, set grind; 8 basic activities: grinding, boring,
milling, drilling, shift, transport, load, upload; 9 preparing activities (example for milling):
choose a type, prepare tools, set rate of feed, set a cutting speed, set a machine function, set
depth of cut, processing strategy, set mill overlapping, set oversize for each basic function.
By different combination of these activities is possible e.g. to mill by normal machine func-
tion, by retooling or by applying other operations (e.g. drilling with correspondingly prepared
machine), i.e. S = {M × (Γ → F, {Cl}) → T, {Cg}}.

For instance, if the maximal length of a repairing plan is equal to 10 steps, this MA
generator Γ is able to emerge maximal 2110 different combinations of atomic activities (i.e.
states S). It is much more than the disturbances, described in Sec. 2, can ever cause. The
point is that, firstly, not all of these combinations have a sense for manufacturing problem,
secondly, how to force the agents to find to required combinations. The last problem can
be solved by specifically chosen negotiations among agents [5], e.g. CSP-based negotiations
used in the generation of primary plans (see e.g. [2]).

Now we rewrite (2), taking into account the made assumptions about the generator Γ

Tr = {Trj : Sj
i → (M × (Γ → F, {Cl}) → T, {Cg})}. (4)

As seen from this expression, the Sj
i is known, but Sj

i+1 = Γ(Si) is yet unknown. Therefore
Tr, beside transition, has in this context a role of a decomposition algorithm. It tells Γ which

489



new state is required on the next step. The problem is that a transition (per definition) deter-
mines an order of steps and performs parameterization of WS by geometry. Changing Tr,
we change a global technology and as a result a final product. Therefore it makes sense to
divide the space Tr into two subspaces of primary Trp and of secondary Trs activities. The
first one defines a manufacturing technology for a product and the second one is directed to
repair a primary activity. Trp is predefined and may not be changed, whereas Trs is in charge
of reactions to disturbances, includes functional decomposition and should be so flexible as
possible. Rewriting finally (3), we get

Pl =

{
prim. : Trp(M × WS → T, {Cg}),
sec. : Trs(M × (Γ → F, {Cl}) → T, {Cg}). (5)

Transforming this functional expression into graphical form, we obtain the following struc-
ture of MA generator of functional alternatives for damaged process plans, shown in fig. 4(a).
Basic element of the primary structure in this figure is a WS-planning agent, described e.g.

(a) (b)

Figure 4: (a) Structure of MA generator; (b) Motion in a vector field with (L) and without (K) obstacle.

in [2]. The kernel of the secondary structure is a task decomposition algorithm, described in
the next section.

4 Algorithm of symbolic tasks decomposition (ASTD)

The algorithm of task decomposition is perhaps the most challenging problem not only in the
distributed planning approaches, but also in domain of distributed problem solving, coordi-
nation and so on. There is a lot of known solutions (see e.g. [5]), however these approaches
are applicable only to a limited number of specific problems and can not be generalized even
to common problem-oriented domain.

Our idea of task decomposition originates from nonlinear dynamics and synergetics (see
e.g. [11]). As known, a motion of a dynamical system is defined by a vector field. If this field
contains an attracting manifold, the system from arbitrary initial state (in attracting area) will
land on this attractor. The attracting dynamics has many applications not only in bifurcation
analysis, in systems’s control, but also in robot navigation and agent coordination (e.g. [12]).
The attracting dynamics has one interesting effect, shown in fig. 4(b). If we perturb nonlin-
ear field (by putting some obstacle on a motion trajectory), a system finds a bypass by all
alone. It is especially evident in time-discrete systems, e.g. the way L from the point ”A” to
”B” will be automatically decomposed on small parts L1, L2, L3, L4 approximating a bypass.

490



The question is whether this analytical approach can be applied by analogy to algorithmic
problems ?

We start from several basic thoughts, being motivated by the example with a motion in a
vector field. Creating a bypass consists of three phases: detection of obstacle and interaction
with it, reaction to this interaction, and, finally, a motion in the field so that to achieve the
final goal. Consider these phases from the viewpoint of MA system.

I. Detection of disturbance. This is a complex problem that is widely discussed in the
corresponding communities. However in the manufacturing environment this problem is sim-
plified, firstly, by certain and limited sensor input, secondly, by a construction of the system,
where the agent, that performs activity, performs also a monitoring of this activity. Forasmuch
as each disturbance perturbs a formalized primary plan, detection of this deviation does not
represent, at least in principle, a problem (see more about this point in the next sections).

II. Reaction on disturbance. We can intuitively say, if the disturbance changes some fea-
ture, to change this feature backwards, we need an activity, being able to change this feature.
For instance, if the feature ”position” has been modified by a disturbance, we need an agent
”transporter” that can modify a position of objects. Speaking more strongly, we suppose that a
reaction to disturbance is determined by some equivalent to vector field, which is a media for
propagation of interactions. The most simple way to create this media is to connect source
and receiver of activities (agents and objects), so that each perturbation can be propagated
further (modifying attributes and activities), till this perturbation will be absorbed. More ex-
actly, the features of objects have to be connected with corresponding activities of agents, e.g.
feature ”position” has to be connected with activity ”to move” of an agent ”transporter” (see
fig. 5(a)). We denote a network of coupled features-activities as FA-network NFA.

(a) (b)

Figure 5: (a) Simple example of FA-network with two objects and four agents; (b) Executing of primary
plan (bold), where the FA-network is applied to each disturbance (dotted) to absorb it.

III. Achievement of a final goal. This is the most important question that is closely
related with reversibility of processes and can be reformulated in the following way: Can
each arbitrary disturbance be absorbed ? or Can each arbitrarily damaged plan be repaired ?
We intuitively so answer this question: if disturbance breaks one of technological or other
restrictions, the primary plan cannot be repaired (e.g. if instead of 5 mm drill hole, we get
10 mm, there is no operation that can drill -5 mm). However this point needs more detailed
investigation. By analogy, a motion in the vector field is an equivalent to executing a primary
plan, where the FA-network is applied to each disturbance to absorb it, as shown in fig. 5(b).
Moreover if all constraints are satisfied the system can accomplish this plan, i.e. achieve a
final goal.

491



Now we formalize these intuitive propositions. Let us introduce a new transition Trdam,
representing a disturbance Trdam = {Trj

dam : Sj
i → S ′j

i+1}, where the state S ′j
i+1 is a new

perturbed state, deviating from the desired state Sj
i+1. If the transition Trdam perturbs only

one feature of an object, we speak about single Trs
dam, if Trdam perturbs simultaneously

several features of one or more objects, we speak about multiple Trm
dam. In this work we

generally focus only on Trs
dam. The aim of planning system is to create a repairing plan Plsec

that returns the system into the state Sj
i+1

Plsec = {Trj
s(S

′j
i+1) → Sj

i+1} (6)

Considering this expression, we claim there are one-step plans and many-step plans satisfying
(6).

Statement 1 Let NFA be a FA-network and Trs
dam is a single perturbing transition. If

Plsec is defined as one-step plan, there is always Trs in sense of (6), if and only if the corre-
sponding Cl are satisfied.

By construction of the NFA network there is always an activity that is able to modify the
perturbed attribute in S′j

i+1. Limitation of this activity is determined by the local constraints
Cl. Therefore if all Cl are satisfied by Trs, the system can achieve the state Sj

i+1.
Statement 2 Let NFA be a FA-network and Trs

dam is a single perturbing transition. If
Plsec is defined as many-step plan, there is always a sequence of Trs in sense of (6) if and
only if
- (1) all local constraints Cl are satisfied;
- (2) all global constraints Cg are satisfied;
- (3) Trs

dam and Trs never intersects.
In this case we follow the previous statement. If Trs

dam perturbs only one feature, we
have a global technology (determined by Cg) of how to change it. If these conditions are
satisfied, then we can apply step-by-step the statement 1. Important is that Trdam does not
cause additional perturbation during executing of Plsec, because an accumulation of several
Trdam may have a nonlinear influence on one another and lead to multiple Trm

dam. Therefore
we require that Trdam and Trs never intersects in this sense. If (1)-(3) are satisfied, and NFA is
closed (all features are connected with activities), any arisen perturbations will be propagated
in this network, till it will be absorbed.

Now the question is of how to derive Trs. From (1) we have

S = {M × WS → T, {Cg}}, S ′ = {M ′ × WS ′ → T ′, {Cg}}. (7)

Let us define a difference between S and S ′ as �S ′. We assume that modifications of ma-
chines M and time T can be absorbed by rescheduling. Therefore functional decompositions
from �S′ concern only working steps (denoted as �WS′). The goal of Trs is to minimize
�S ′, i.e. we can write

Trs(M × WS ′ → T, {Cg}) = �S ′ (8)

or with generator Γ: Trs(M × (Γ → F, {Cl}) → T, {Cg}) = �S ′, where

(Γ → F, {Cl}) = �WS ′. (9)

Expressions (8) and (9) give us a practical way to derive Trs. Thus, a task decomposition rep-
resents a systematic way to find a difference between real state and desired state in a form of

492



working steps, generated by Γ. For many-step plans this rule should be applied on each step
of executing, moreover this sequence of generated working states converges in sense of (6).
So far as the problem, before decomposition, should be first formulated in a symbolic form
(as FA-network), we call this algorithm as the symbolic tasks decomposition. Complexity of
the FA-network can be estimated from different viewpoints: Kolmogorov-Sinai’s complex-
ity, Kullback-Leibler’s cross-entropy or information capacity of interconnections. However it
represents a future work.

The most simple algorithm that implements (8), (9) in agent-based executing has the
following form: This algorithm assumes the FA-network is already constructed, moreover

agent:role (monitoring)
do always monitor attributes

of the plan
activate if not equal do

{call FA-connected agent,
role=change attribute}

finish if receive cost
endactivate

endrole

agent:role (change attribute)
do always monitor attributes of the plan
activate if not equal do take role=monitoring

finish if receive cost
endactivate
activate if equal do change attribute

finish if calculate cost
endactivate

endrole

there is only Trs
dam. The role ”monitoring” detects a deviation from a plan and calls the role

”change attribute” of a connected agent. The connected agent (from FA-network) compares
the executing conditions, in the case of mismatch, it calls the role ”monitoring”, otherwise it
changes an attribute, calculates cost and returns this cost to a parent activity. Application this
algorithm is considered in the next section.

5 Experiments in TMS-scenario

The ideas described in this paper have been implemented in the TMS-scenario (Transformable
Manufacturing Systems). In this scenario there are three machine shops, each of them con-
tains three-five reconfigurable and non-reconfigurable processing machines. Each of non-
reconfigurable machines is able to perform two different (of four required) processing op-
erations. These machines are connected by a conveyer belt, so that details can be trans-
ported from one machine to another within one machine shop (see fig. 6). There is also a
transporter being able to transport details from one shop to another. One shop consists com-
pletely of reconfigurable machines, one shop has only one reconfigurable machine and the last
shop consists only of non-reconfigurable machines. The planning system uses Agent-Based
Scheduling Engine ABSE, with CSP-solver and MAS optimization module based on ACO
algorithm [3]. The ASTD module as well as the generator Γ are implemented by OpenCybele
(see http://www.opencybele.org) in Java, the time-sensitive optimization module is written in
C++. The whole approach for 55-nodes in CSP- and FA-networks executes in real time.

Different disturbances are composed into several scenarios. Development of these scenar-
ios has been motivated to find the worst case for a planning system, where the human assis-
tance can lead to better solution. As shown by experiments, ABSE-ASTD-Γ engine perform
in the best way a functional decomposition, but cannot perform completely autonomously an
organizational decomposition. Here can the human assistance essentially improve the plan.

493



(a) (b)

Figure 6: (a) Example of a reconfigurable machine (taken from www.hueller-hille.com); (b) Layout of
one of machine shops, where NC is a numerical control, PLC is a programmable logic controller, and
MC is a machine center (taken from [2]).

6 Conclusion

The suggested ASTD allows solving the problem of huge state space in manufacturing plan-
ning systems: typical regular processes can be preprogrammed, the untypical irregular pro-
cesses (e.g. reactions on disturbances) can be dynamically generated. This approach can also
be applied in other environments, where the number of state space is huge or an appear-
ance of new states in a plan is possible. Adaptation of ASTD to MDP or similar approaches
represents a further task.

This work has been made in the framework of project SFB 467 ”Transformable Business
Structures for Multiple-Variant Series Production ”, supported by DFG. We are grateful to
Jörg Priese for details of a workpiece shown in fig. 1.

References

[1] B. J. Pine. Mass Customization. The New Frontier in Business Competition. Harvard Business School
Press, Boston, Mass, 1999.

[2] S. Kornienko, O. Kornienko, and J. Priese. Application of multi-agent planning to the assignment problem.
accepted for publication in ‘Computers in Industry‘, 2003.

[3] S. Kornienko, O. Kornienko, and P. Levi. Flexible manufacturing process planning based on the multi-
agent technology. In Proc. of 21st Int. Conf. AIA’03, Innsbruck, Austria, pages 156–161, 2003.

[4] S.J. Russell. Artificial intelligence: a modern approach. Prentice-Hall, 1995.

[5] G. Weiss. Multiagent systems. A modern approach to distributed artificial intelligence. MIT Press, 1999.

[6] A. Kusiak. Intelligent manufacturing systems. Prentice-Hall, Englewood Cliffs, NJ, 1990.

[7] V. Engelson. Simulation and visualization of autonomous helicopter and service robots. Linköping Elec-
tronic Articles in Computer and Information Science, ISSN 1401-9841, 5(013), 2000.

[8] B. C. Williams and P. Nayak. A model-based approach to reactive self-configuring systems. In Proc. of
13th AAAI’96 / 8th IAAI’96, volume 2, pages 971–978, 1996.

[9] ISO/DIS14649-1. Part 1: Overview and fundamental principles. Genf Final DIS, 2000.

[10] G.E. Monahan. A survey of partially observable markov decision processes: Theory, models, and algo-
rithms. Management Science, 28(1):1–16, 1982.

[11] H. Haken. Advanced synergetics. Springer-Verlag, Berlin, 1983.

[12] O. Kornienko, S. Kornienko, and P. Levi. Collective decision making using natural self-organization in
distributed systems. In Proc. of Int. Conf. CIMCA’01, Las Vegas, pages 461–471, 2001.

494


