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Abstract

Distributed systems without centralized elements need a distributed mechanism that allows ac-
complishing the control and synchronization tasks. This problem is especially relevant in nano-
and biosystems that do not possess complex computational devices. However the collective co-
ordination and decision making may be performed using the available in these systems natural
dynamical processes based on chemical, optical, electromagnetic or quantum effects. Utilizing
these dynamical processes, the transfered information within distributed system is firstly effi-
ciently coded, secondly, does not contain the global information about the whole system. This
guarantees security and privacy being also very important in other fields, e.g. in e-commerce.

1 Introduction

Distributed systems without centralized coordination are employed in many branches of
computer science and lately often in bio- and nanotechnology (e.g. [1], [2]). Specific
problems encountered here consist in replacing the functions performed by central ele-
ment such as synchronization [3], decision making [4], coalition formation [5] and so on.
Moreover bio- and nanosystems often do not have or possess only the limited computa-
tional resources and memory capacity that restrict the information interactions among
subsystems both in amount of transfered information and in the participants that this
information can be directed to [6]. Similar restrictions to the information interactions
but from completely other ground arise e.g. in internet, where the interactions need to
be restricted by the reason of security and privacy. Often the number of participants in
such distributed systems is also unknown. Decision making in these systems has also a
specific form. Direct usage of conventional procedures of the knowledge(rule)-based pro-
cessing (e.g. [4]) is here restricted by two reasons: firstly, these procedures need collective
information describing the whole system, secondly, due to limitation of computational
resources this collective information as well as the processing rules have to be efficiently
coded and compressed.

Considering bio- and nanosystems, one can remark they possess natural dynamic pro-
cesses determined by chemical, optic, electromagnetic or quantum effects (e.g. [6]-[8]).
These dynamical processes from the mathematical viewpoint are suitable to be under-
lying the synchronization and decision making in such distributed systems. In this case
interactions among subsystems may be performed e.g. by an electromagnetic field or by
a concentration of chemical agents. Using available nonlinear elements, the information
processing can be also distributed among participants, therefore centralized computa-
tional devices are not needed. Collective information processing based on the dynamical
processes has another advantage over traditional approaches. From the synergetics [9] it
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is known that any distributed system demonstrating collective behaviour (e.g. decision
pattern, synchronized behaviour and structure) possesses some dynamical values often
denoted as order parameters (OPs). They have dual nature: on the one hand they de-
scribe the collective activity of the whole system, i.e. self-organization, on the other hand
they are distributed among participants. In this way the OPs allow designing the desired
collective behaviour of distributed system without using any centralized elements.

The order parameters describe the qualitative changes of collective behaviour given in
the case of decision making by the macroscopic decision pattern. Before the distributed
system comes to mutual agreement the decision pattern has chaotic or more commonly
not ordered structure. After achieving the needed agreement, the decision pattern is be-
ing ordered. Generally speaking the derived OPs show whether the distributed system is
able to achieve the collective decision. Therefore it is natural to assume the desired col-
lective process may be predetermined by the corresponding OPs. Forasmuch as the order
parameters depend on subsystems and interactions (couplings) among them, the needed
modifications, given by the predetermined OPs, can be obtained in the distributed sys-
tem by changing interactions (couplings) or subsystems. In other words the systematic
approach towards modifying or creating the desired self-organization process among com-
ponents of distributed system has been suggested that thereby guarantees the needed
collective information processing.

The natural dynamical systems mentioned above are described by the corresponding
mathematical models. Therefore the first problem consists in obtaining the OPs and
adjusting their form so that to make them suitable for decision making. This form of
order parameters imposes the defined conditions on the couplings among the subsys-
tems. Performing the successive propagation of these conditions and taking into ac-
count the given natural restrictions, we get the couplings that guarantee achieving the
desired common agreement. The second problem is to make this approach compatible
for usage in conventional computer systems, where we suggest a hybrid structure of the
subsystem-participant containing analytic as well as algorithmic structures. Finally, the
whole approach is demonstrated on the computer simulation of moving agents that can
be considered as a prototype of robotic or nanorobotic system.

2 General principles

Analytical approach towards investigations of distributed systems encounters some typical
problems caused mainly by high complexity degree of these systems. Therefore analyzing
the distributed systems, it is necessary to reduce their complexity. Basis of such a reduc-
tion is given by the following observation. Forasmuch as there are no centralized elements
the control over the whole system is performed in the distributed way by means of specific
interactions among subsystems being autonomous. From this viewpoint the complexity
of separate subsystem determines the ability of action, perception, processing, etc. Dis-
tributed control is determined primarily by the ability of interaction and by distributed
structure of the whole system. It means, investigating distributed control, one can build
the sequence of simplified models (see Figure 1), if they will preserve a similar structure,
i.e. they will have independent components that are able to perform specific interactions.
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In this way one can distinguish three simplification levels.

Figure 1: Systematic approach to the
analysis and control of collective phe-
nomena in distributed systems using the
synergetic methodology.

The first (algorithmic) simplification level
is represented by multi-agent systems (MAS),
where an agent on this level is in fact the
simplified model of a Real World (RW)-
subsystem. Negotiations among subsystems-
participants on this level is a dynamical process
whose result is represented by common agree-
ment about some statement. The kind of this
statement may be different, e.g. decision about
the next step of a plan, coordination, monetary
value and so on. Observing the decision mak-
ing systems, one can distinguish the structure
supporting this dynamical process of negotia-
tion and the further structures implementing
the made decision. The structural scheme of
a system having decision and supporting mod-
ules, denoted further as analytical and algorith-
mic agents, is shown in Figure 2.

The principles underlying the decision mod-
ule are unique, whereas the supporting mod-
ule depends on implementation details, envi-
ronment and so on. It is especially obvious on
the example with the moving robots which are
completely different in the hardware realization
however use similar algorithms of decision mak-
ing (e.g. [2], [12]). Therefore being motivated by above mentioned reasons, we suggest to
discouple both modules and to focus further on the analytic agent whereas algorithmic
one will be leaved for the specific realization on the RW and MAS levels.

Figure 2: Autonomy cycle of a
subsystem-participant consisting of an-
alytical and algorithmic parts.

The second (mathematical) simplification
level is given by such a mathematical object
as the coupled map lattices (CML) [11]. In
this case the basic maps on the Mathematical
Models (MM)-level present the simplified (ide-
alized) model of an analytical agent. Accord-
ingly, the interaction among analytical agents
corresponds to the coupling among maps.

From the viewpoint of synergetics the collec-
tive behaviour of coupled maps is a result of
selforganisation between internal components
of initial maps. Such internal components are
often denoted as modes. It turned out that only
a few modes stand in a generation of collective behaviour. Therefore in case the dimen-
sion and degrees of freedom of coupled system can be reduced to these modes one can
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get the compact analytical characterization of the collective phenomena, so-called order
parameter (OP) [9]. Systematicalness of this procedure guarantees reconstruction of the
complexity at the backward transformation from OP to the initial system.

The dynamics of CML-model can be viewed as a process of negotiations and thereby
the initial map itself determines the local negotiation strategy for every agent. In this
case the order parameter demonstrates whether the overall system is able to achieve a
mutual agreement in a finite time. Correspondingly the behaviour of the order parameter
equation can be modified so that to guarantee a desired collective decision with the chosen
evaluation criterion. Then returning back to MM and MAS levels, one can determine
changes of the couplings (interactions) among maps (agents), caused by a modification of
the order parameter.

3 Analytical agent

Analytical agent shown in Figure 2 represents the module that on the base of communi-
cations with other such modules deliver the common decision for further processing by
the algorithmic part. The main idea is that the analytic agent may be implemented by
dynamical systems being available in the given environment. Forasmuch as the desired
negotiation processes is primarily determined by interactions (couplings) therefore a wide
range of these basic dynamical systems is allowed. There is one requirement imposed
on the dynamical systems that the results of dynamical process i.e. decisions should be
robustly recognized by the algorithmic agent.

Choosing an example exemplifying the mentioned approach, we are motivated by
robotics. The dynamical systems used here possess mainly discrete nature of time, there-
fore we focus further on this type of dynamical systems. In the first case it is assumed
there is a lot of fixed decisions and every agent votes for one of them. Individual agent
is motivated by own reasons however the whole group during negotiation session should
achieve the common agreement. The most simple discrete dynamical systems suitable
for this kind of dynamics are given by the perturbed normal forms of transcritical and
pitchfork bifurcations [13]

qi
n+1 = acoupl · (qi

n − (qi
n)2) + (qi

n)2, i = 1, ..., m, (1)

qi
n+1 = acoupl · (qi

n − (qi
n)3) + (qi

n)3, i = 1, ..., m, (2)

whose bifurcation diagrams are shown in Figure 3(a) and (b). The bifurcation parameter
acoupl is in fact the coupling function acoupl(q

1
n, q1

n, ..., qm
n ) where m is the dimension of the

coupled system. For the system (1) the value of acoupl in the region [-1,1) leads to the
stationary state qst1 = 0 and in the region (1,3] to the qst2 = 1. These values can be viewed
as a logical ”0” and logical ”1” for the further processing in the algorithmic agent. The
system (2) possesses three stationary states ”-1”, ”0”, and ”1” that are correspondingly
suitable for coding three possible decisions. In case more potential decisions are needed
it is reasonable to use the approaches that sequentially browse all possible decisions.

As already mentioned above, the common agreement achieved by a distributed system
can be presented not only by fixed values but also can be given by some value in the
defined range (e.g. result of auction). It is only assumed that the calculation algorithm
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(a) (b) (c)

Figure 3: The bifurcation diagrams (m = 1): (a) of the system (1); (b) of the system
(2) (with positive and negative initial conditions); (c) The behaviour of state variables
qi
n of (3) using (4) and remarks in Sec. 5 (m = 10) with the initial values q1,2,...,10

0 =
{0.1, 0.2, 0.3, ..., 0.9, 0.99}. The calculated arithmetical mean value is equal to 0.549.

of this value is formalized by logical or arithmetical formula. In the simple case we are
trying to calculate the arithmetical mean value from initial proposals of participant agents.
The number of these agents is unknown and moreover every agent obtains information
only about communicated neighbours (global information is not allowed). In this case we
suggest using the following simple dynamical system

qi
n+1 = fcont · (qi

n + acoupl), i = 1, ..., m, (3)

where fcont is the control function determining the required result.

4 Couplings among analytical agents

Analytical agents, performing negotiation, are interacted together. However from the
mathematical viewpoint agents are represented by the corresponding dynamical systems
that are coupled together. In this context the coupling implies not only the way of connec-
tions, but also the way of communication, i.e. it is a mathematical analogue of interaction.
Changing the coupling among basic dynamical systems, we can correspondingly exert an
influence on the output results of negotiation procedure. Determining the result of nego-
tiation, we do not mean hereby to fix the decision, we only guarantee that the system is
able to achieve the final decision in finite time. Therefore the type of initial system is not
so important because the result may be changed by the accordingly adjusted couplings.
The coupling can be performed either locally i.e. among neighbour agents or globally i.e.
in the group. Generally the choice of the neighbours for coupling may have the random
nature. We assume only that during one communication session the agents build some
kind of closed chain, whereas during the next session the agents may be ordered in another
way.

Considering the moving robots with chemical [2] or optical [12] communication channels
that have mainly local interaction nature, we assume every agent can perform commu-
nication with two local neighbours, i.e. acoupl(q

i+1
n , qi−1

n ). Thus the interacting agents
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represent a two-way coupled ring (taking into account the boundary conditions for qi+1
n ,

qi−1
n ). The coupling function acoupl(q

i+1
n , qi−1

n ) is selected as the following polynomial

acoupl(q
i+1
n , qi−1

n ) = k0 + k1q
i+1
n + k2q

i−1
n + O((qi+1

n )2, (qi−1
n )2), (4)

where kj are coefficients. Solution of this problem is expected to be given by coefficients
kj of coupling function (4). In case the solution can not be found the order of (4) will be
increased until the solution will be obtained.

5 The order parameters

As mentioned above the collective agreement represents a qualitative change in the group
behaviour described by macroscopic order parameters. As can be observed from Figure 1
there are bottom-up and top-down approaches to derive the order parameters. Utilizing
bottom-up approach the basic systems of the CML model are being consecutively reduced
until the OP will be obtained. However, forasmuch as the coupling polynomial (4) is not
yet determined on this step, the OP derivation procedure can not be applied to the CML
model. Therefore our suggestion consists in using the top-down approach, where first an
assumption about dynamics of order parameters is made, then all needed modifications
are propagated into the CML model.

Considering macroscopic dynamics of simple voting systems introduced in Sec. 3, one
can remark the negotiation will be ended up when all participants achieve mutual agree-
ment, i.e. all will vote for only one of initial proposals. This kind of macroscopic dynamics
is very similar to the case of coexisting attractors (e.g. [9]) illustrated by the following
one-dimensional normal form

ϕn+1 = λuϕn + µ3ϕ
3
n + O(ϕ4

n), (5)

where λu > 1 and µ3 < 0 are coefficients. The system (5) possesses three stationary states

ϕst1,2,3 = {0,
√

µ3(1 − λ)/µ3,−
√

µ3(1 − λ)/µ3} and for λu > 1 the state ϕst1 is unstable

and ϕst2,3 are stable. As shown on Figure 4(a) the attractor that the state variable ϕn will
be attracted to is determined by initial conditions, namely ϕ0 > 0 for ϕst2 and ϕ0 < 0 for
ϕst3 . In other words the long time dynamics of the system with the coexisting attractors
is determined by the initial conditions, i.e. by their so-called attraction basins (e.g. [13]).

Using the synergetic slaving principle [9], this kind of dynamics can be expanded to the
initial system (1). In this case m state variables, starting from one of these basins, will be
attracted to the appropriate attractor. However if the state variables start from different
basins they will compete for the attractor that these variables will be attracted to (see
Figure 4(b)). The negotiation (here a voting procedure) can be based on this competition
where the initial conditions of coupled systems (1) play a role of agents’s initial proposals,
e.g. ”0.25” for ”macroscopic state 0” and ”0.75” for ”macroscopic state 1”.

If the distributed system has taken the collective agreement it means that all state vari-
ables qi

n of coupled systems (1) get the same values. Now let us determine the vector of sta-
tionary states of the coupled systems (1) with dimension m as q

st=0
= {q1

st = 0, ..., qm
st = 0}

and q
st=1

= {q1
st = 1, ..., qm

st = 1}. Following macroscopic assumption given by (5), we have
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(a) (b)

Figure 4: (a) Dynamics of the system (5), where λu = 1.3 and µ3 = −0.1, (two times:
at initial condition x0 = −0.3 and at initial condition x0 = 0.3); (b) two different initial
conditions in competition dynamics of the system (1) based on the NF (5), m = 4.

to stabilize q
st=0

and q
st=1

whereas all other stationary states should remain unstable.
Performing the linear stability analysis, we are mainly interested in the following eigen-
values λ

q
st=0

1,...,m = k0, λ
q

st=1
1,...,m = −k0 −k1 −k2 +2, where subindex denotes the number of the

eigenvalue, superindex shows the stationary state that the eigenvalue is evaluated on. In
accordance with the macroscopic assumptions given by (5) we require

|λq
st=0

1,...,m| < 1, |λq
st=1

1,...,m| < 1, |λq
st �=0,1

1,...,m | > 1. (6)

In addition the boundary conditions for initial map (1) are

k0 + k1(q
i+1
n )max + k2(q

i−1
n )max < 3, k0 + k1(q

i+1
n )min + k2(q

i−1
n )min > −1, (7)

where (qi
n)max, (qi

n)min are the maximal and correspondingly minimal values of state vari-
ables qi

n. Conditions (6) can be simplified by the following assumption:
- We suppose some of ”unstable” stationary states q

st �=0,1
can be also stable. The arisen

thereby simultaneously stable stationary states can be absorbed by appropriate choice of
initial conditions.
- From m eigenvalues |λq

st �=0,1

1,...,m | > 1, evaluated on stationary state, only one has to be
unstable.
- Forasmuch as all initial systems (1) are identical and they are coupled in (4) by sym-
metrical coupling it is expected that their eigenvalues are also equal. Therefore it needs to

consider instead of all λ1,...,m only one from them for the conditions |λq
st=0,1

1,...,m | < 1.
Moreover a solution of the inequalities (6) and (7) is simplified by the stationary states
that are equal to 0 or 1. Finally we get the linear system of inequalities that can be
solved by programs of symbolic manipulations like Maple or Mathematica. Performing
the needed calculation, we get finally k0 = 0, k2 = k1,

1
2

< k1 < 3
2
. These coefficients

kj stabilize the required stationary states, moreover they fulfil the requirement µ3 < 0
in (5). The last problem consists in determining the boundary of attraction basin that
specify the quota needed for taking of collective decision. For example for the quota 50%
the initial conditions are 0.555544 for ”0” and 0.555572 for ”1”, where m = 6, ..., 10.
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Determination of the couplings coefficients for the system (3) can be performed in the
same way. However we remark this system can be directly solved by using e.g. the
Jordan normal form approach. Solving this system at k0 = 0, k1 = 1, k2 = 1, we obtain
the arithmetical mean value qi

n→∞ = 1
m

∑m
j=1 qj

0, setting simply fcont = 1/3. The behaviour
of the state variables qi

n is shown in Figure 3(c).

6 Dimension scaling

The essential question arisen often in praxis concerns the dimension of the system (1). The
problem is that the complexity of real applications is much higher than it can be treated
analytically. In order to get round this problem we assume that some properties of the
regular built CMLs are independent of their dimension. The regular or homogeneous
CMLs are such coupled maps that possess equal basic systems coupled by means of
the polynomials like (4). In such cases the low-dimension systems can be expanded in
arbitrary high dimension without changing their linear and some nonlinear properties.

Now we would like to show that the CML (1) possesses the mentioned properties de-
noted further as the dimension scaling. For that we consider separately the linear and
nonlinear parts of (1). Moreover it is also important to show the possible changes in the
basins of initial conditions.

Linear part of (1) is given by eigenvalues of the corresponding Jacobian. Evidently that
eigenvalues λ evaluated on q

st=0
,q

st=1
(the ”0” and ”1” stationary states are independent

of the dimension of (1)) are always equal and therefore independent of the dimension
change. To show, that nonlinear part is also independent of the dimension (1), is more
difficult. One possible way is to assume the eigenvalues (6) are parameters and then to
derive the normal form of system (1). Considering the derived normal form, one can prove
whether the nonlinear terms are independent from the dimension m. But forasmuch as
all eigenvalues are equal we will get thereby the normal form of m state variables and a
treatment of this topic outsteps the framework of the given work. But we can simplify
the problem of nonlinear terms, if to consider only postbifurcation dynamics of system
(1).

For that let ξi
n = qi

n − qi
stj

and then substituting it into (1) and taking into account the

derived coefficients k, we get the following system for the cases qi
st = 0 and qi

st = 1

ξi
n+1 = λq

st=0ξi
n + (ξi

n)2 + k1ξ
i
n(ξi−1

n + ξi+1
n ) − k1(ξ

i
n)2ξi+1

n , (8)

ξi
n+1 = λq

st=1ξi
n + (1 − 2k1)(ξ

i
n)2 − k1ξ

i
n(ξi−1

n + ξi+1
n ) − k1(ξ

i
n)2ξi+1

n , (9)

where i = 1, ..., m, m is the dimension and taking into account the boundary condition for
ξi−1
n , ξi+1

n . These equations are usually denoted as mode amplitude equations (e.g. [14]).

Forasmuch as λq
st=0 , λq

st=1 are coefficients and |λq
st=0| < 1, |λq

st=1 | < 1 we conclude
that the systems (8), (9) do not undergo any local bifurcations, moreover the stationary
state ξsti is stable in the linear approximation for both systems. Therefore we can narrow
down the proving and to verify that the state variables of systems (8), (9) at long time
dynamics will always get zero state. The idea is that these systems because of the local
couplings possess the homogeneous structure and if their state variables at dimension
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i = 3, 4, ..., j are really getting zero state, then in systems with i = j + 1, j + 2, ..., m they
will also get zero state.This step has been performed numerically. In this way we have in
fact proved that nonlinear terms of system (1) built supercritical type of postbifurcation
dynamics.

7 Simulation

As the behavioral scenario we choose the group of the moving agents, that demonstrates
macroscopic spatio-temporal patterns. Each agent of this group can move in four direc-
tions on the plane, determine the distance between the neighbour agents and perceive
some local external influence. This can be interpreted as e.g. ”I’m attacked”, however an
agent is not allowed to know whether its neighbour agents are also ”attacked”. In case
three or more agents in an arbitrary order have been simultaneously attacked, the whole
group has to change the spatial formation, e.g. from the march formation to the defense
formation. Thus the agents have to communicate in order to reach a mutual agreement
about the spatial structure that they will behave in. Such a scenario is chosen because
the sensors and the motion control of each agent is very similar to the sensors and the
motion control of real robotic systems.

Each algorithmic agent sets the initial value of state variable qi
0 in analytical agent. It

corresponds to the local sensor data as ”0” - I’m not attacked” and ”1”- I’m attacked”.
These logical values are coded by numerical values, following the defined specifications.
The algorithmic agent looks for the neighbours (e.g. spatial direct neighbours or optical
direct ones and etc.) and connects to them. After that the analytical agent carries out

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 20 40 60 80 100

q[
n]

n

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

q[
n]

n

(b) (c) (d)

Figure 5: The behaviour of the state variables qi
n of the coupled system (1) with m = 7:

(a) The case ”only 2 agents from 7 are attacked”; (b) The case ”only 3 agents from 7 are
attacked”; (c) corresponds to (a), execution of the distributed plan 0; (d) corresponds to
(b), execution of the distributed plan 1.

the negotiation session. As a result its state variable obtains the predefined values that
is recognized by algorithmic agent, i.e. the state ”0” corresponds to the plan ”0” and the
state ”1” corresponds to the plan ”1”. The collectively accepted plan should be executed,
after that the algorithmic agent perceives the next local sensor data, i.e. the whole cycle
is repeated. Spatial formation, that the agents are moved in, is obtained by selecting
different neighbour agents for increasing or decreasing the distance. Plan 0. In the first
plant every agent attempts to keep a distance with only one neighbour agent. In the
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first phase it determines whether the selected agent is free. If an answer is positive the
agent connects to it and then changes a status from free to busy. Plan 1. The second
distributed plan is based on the symmetrical properties of regular polygons. All sides of
such a polygon equal each other and circumscribed circle. Therefore as the local rule of an
agent we can determine keeping the equal distance with one leading agent, that presents
the center of group, and with two direct neighbours. The corresponding spatio-temporal
patterns and the temporal behaviour of the state variables qi

n are shown in Figure 5.

8 Conclusion

Coordination and decision making within distributed system without centralized elements
can be performed using simple dynamical systems. Advantage of this approach is evident
if to consider the nano- and biosystems that do not have complex computational devices,
but possess different natural dynamics systems. Using this approach, the transferred
information within a distributed system can be efficiently coded and moreover does not
carry the global information about the whole system.

Security and privacy in the network using the suggested approach can be essentially
improved if to encode the collective decisions not only by equal states as e.g. ”all states
equal one (1-1-1...)” or ”all states equal zero (0-0-0...)”, but also to encode by the mixed
states (e.g. 0-1-0-1-1...). In this case a craker raiding into the network will get only local
information about two neighbours that is senseless without other states of the group.

Our last remark concerns a phenomenon of the swarm intelligence from the viewpoint
of synergetics. This phenomenon can be considered on the different abstraction levels.
On the macroscopic level the group intelligence consists in the possibility to process
the information perceived from different areas being accessible to the whole system, to
coordinate the activity of separate agents in compliance with needs of overall system,
to build new algorithms of distributed information processing. As pointed out by some
authors the collective behaviour is not simply the sum of each participant’s behaviour,
substantially it emerges on the society level.

This points to existence of the social laws acting in the group on mesoscopic level. The
question is how these social laws do arise in the group ? On the microscopic level every
agent can be represented in a sense as consisting of different ”internal” components. It is
not only the separate structural or functional components but also their different combi-
nations. From the viewpoint of synergetics the agent’s ”internal” components interacting
on the microscopic level cause thereby the social law on mesoscopic level. The arisen
social laws, influencing backwards on the behaviour of every agent, lead finally to the
phenomenon of the swarm intelligence on the macroscopic level.

These ideas lead to the following conclusions. Firstly the social law acting in the group
is nowhere contained in explicit form, it is always dynamically generated. It means that
this law can not be extracted from the behaviour of separate agent. Secondly in order
to modify the social law i.e. the macroscopic group intelligence it needs to modify the
interaction between the internal agent components on the microscopic level. This can be
distinctly seen on the simulation, where every agent is able to move in the four directions
on the plane and to keeps the determined distances to neighbours. These abilities at the
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agents, composed into the group, are not changed. But on the base of communications the
agents coordinate own activities and hereupon they can rationally react to the distributed
influence directed on the whole group. Correspondingly modifying the communication,
one can change this collective response, i.e. their swarm intelligence.
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generation with worst case guarantees, Artificial Intelligence, Vol. 111, 209-238, 1999.

[6] I. Gerlovin, V. Ovsyankin, B. Stroganov & V. Zapasskii, Coherent transients in semicon-
ductor nanostructures as a basis for optical logical operations, Nanotechnology Vol. 11,
383-386, 2000.

[7] D. Bagon, J. Kempe, D. A. Lidar, K. B. Whaley & D. P. DiVincenzo, Encoded univer-
sality in physical implementations of a quantum computer. Preprint quant-ph/0102140 at
http://xxx.lanl.gov.

[8] D. P. DiVincenzo, The physical implementation of quantum computation, Preprint quant-
ph/0002077 at http://xxx.lanl.gov.

[9] H. Haken, Advanced Synergetics, Springer Verlag, Berlin, Heidelberg, New York, Tokyo,
1983.

[10] G. Weiss, Multiagent systems. A modern approach to distributed artificial intelligence, MIT
Press, 1999.

[11] K. Kaneko, Theory and application of coupled map lattices, (John Willey & Sons. Chich-
ester, New York, Brisbane, Toronto, Singapore, 1993)

[12] N. Oswald, M. Becht, T. Buchheim, P. Burger, G. Hetzel, G. Kindermann, R. Lafrenz, M.
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